
E. E. Holmes and E. J. Ward

Analysis of multivariate time-
series using the MARSS package

version 2.1

May 26, 2011

Mathematical Biology Program

Northwest Fisheries Science Center, Seattle, WA

Holmes, E. E. and E. J. Ward. 2010. Analysis of multivariate time-series
using the MARSS package. NOAA Fisheries, Northwest Fisheries Science
Center, 2725 Montlake Blvd E., Seattle, WA 98112. Contacts
eli.holmes@noaa.gov and eric.ward@noaa.gov

V

Preface

The initial motivation for our work with MARSS models was a collaboration
with Rich Hinrichsen. Rich developed a framework for analysis of multi-site
population count data using MARSS models and bootstrap AICb (Hinrich-
sen and Holmes, 2009). Our work (EEH and EJW) extended Rich’s frame-
work, made it more general, and led to the development of a parametric boot-
strap AICb for MARSS models, which allows one to do model-selection using
datasets with missing values (Ward et al., 2009; Holmes and Ward, 2010).
Later, we developed additional algorithms for simulation and confidence in-
tervals. Discussions with Mark Scheuerell led to an extensive revision of the
EM algorithm and to the development of a general EM algorithm for con-
strained MARSS models (Holmes, 2010). Discussions with Mark also led to
a complete rewrite of the model specification so that the package could be
used for MARSS models in general—rather than simply the form of MARSS
model used in our (EEH and EJW) applications. Many collaborators have
helped test the package; we thank especially Yasmin Lucero, Mark Scheuerell,
Kevin See, and Brice Semmens. Development of the code into a R package
would not have been possible without Kellie Wills, who wrote the much of the
code outside of the algorithm functions.

The case studies used in this manual were developed for workshops on
analysis of multivariate time-series data given at the Ecological Society meet-
ings since 2005 and taught by us (EEH and EJW) along with Yasmin Lucero,
Stephanie Hampton, Brice Semmens, and Mark Scheuerell. The case study on
extinction estimation and trend estimation was initially developed by Brice
Semmens and later extended by us for this manual. The algorithm behind the
TMU figure in Chapter 8 was developed during a collaboration with Steve
Ellner (Ellner and Holmes, 2008).

EEH and EJW are research scientists at the Northwest Fisheries Science
Center in the Mathematical Biology program. This work was conducted as
part of our jobs at the Northwest Fisheries Science Center, a research center for
NOAA Fisheries which is a US federal government agency. A CAMEO grant
from NOAA Fisheries supported Kellie Wills. During the initial stages of this
work, EJW was supported on a post-doctoral fellowship from the National
Research Council.

You are welcome to use the code and adapt it with attribution. It may not
be used in any commercial applications. Links to more code and publications
on MARSS applications can be found by following the links at EEH’s website
http://faculty.washington.edu/eeholmes. Links to our papers that use these
methods can also be found at the same website.

Contents

1 The MARSS package . 1
1.1 What does the MARSS package do? . 2
1.2 How to get started (quickly) . 2
1.3 Important notes about the algorithms . 3
1.4 Troubleshooting . 5
1.5 Other related packages . 6

2 Overview of the package functions . 9
2.1 The MARSS() function . 9
2.2 Core functions for fitting a MARSS model 10
2.3 Functions for a fitted marssMLE object . 10
2.4 Functions for marssm objects . 11

3 The MARSS() function . 13
3.1 Process equation constraint options . 14
3.2 Observation equation constraints . 18

4 Model specification in the core functions 21
4.1 The fixed and free components of the model parameters 21
4.2 Limits on the model forms that can be fit 23

5 Algorithms used in the MARSS package 25
5.1 Kalman filter and smoother . 25
5.2 The exact likelihood . 26
5.3 Maximum-likelihood parameter estimation 27
5.4 Parametric and innovations bootstrapping 28
5.5 Simulation and forecasting . 29
5.6 Model selection . 29

VIII Contents

6 Examples . 31
6.1 Fitting different MARSS models to a dataset 31
6.2 Printing and summarizing models and model fits 38
6.3 Confidence intervals on a fitted model . 39
6.4 Vectors of just the estimated parameters 40
6.5 Degenerate variance estimates . 41
6.6 Bootstrap parameter estimates . 43
6.7 Data simulation . 43
6.8 Bootstrap AIC . 46

7 Case study instructions . 47

8 Case Study 1: Count-based Population Viability Analysis
using corrupted data . 49
8.1 The Problem. 49
8.2 Simulated data with process and observation error 50
8.3 Maximum-likelihood parameter estimation 53
8.4 Probability of hitting a threshold Π(xd, te) 58
8.5 Certain and uncertain regions . 62
8.6 More risk metrics and some real data . 64
8.7 Confidence intervals . 66
8.8 Comments . 67

9 Case study 2: Combining multi-site and subpopulation
data to estimate regional population dynamics 69
9.1 The problem . 69
9.2 Analysis assuming a single total Puget Sound population 71
9.3 Changing the assumption about the observation variances 76
9.4 Analysis assuming north and south subpopulations 79
9.5 Using MARSS() to fit other population structures 83
9.6 Discussion . 85

10 Case Study 3: Using MARSS models to identify spatial
population structure and covariance . 89
10.1 The problem . 89
10.2 How many distinct subpopulations? . 90
10.3 Is Hood Canal separate? . 93

11 Case Study 4: Dynamic factor analysis (DFA) using
MARSS . 97
11.1 Dynamic factor analysis . 97
11.2 The data . 99
11.3 Setting up the model . 100
11.4 Fitting up the model . 103
11.5 Using model selection to determine the number of trends 105
11.6 Using a varimax rotation to determine the trend loadings 109

Contents IX

11.7 Discussion . 109

12 Case Study 5: Using state-space models to analyze noisy
animal tracking data . 111
12.1 A simple random walk model of animal movement 111
12.2 The problem . 112
12.3 Estimate locations from bad tag data . 112
12.4 Comparing turtle tracks to proposed fishing areas 116
12.5 Using specialized packages to analyze tag data 117

A Textbooks and articles that use MARSS modeling for
population modeling . 119

B Package MARSS: Object structures . 123
B.1 Model objects: class marssm . 123
B.2 Wrapper objects: class popWrap . 124
B.3 ML estimation objects: class marssMLE . 125

C Package MARSS: The top-level MARSS functions and
the base functions . 127

References . 129

Index . 133

1

The MARSS package

MARSS stands for Multivariate Auto-Regressive(1) State-Space. The MARSS
package is designed for linear MARSS models with Gaussian errors. This class
of model is extremely important in the study of linear stochastic dynamical
systems, and these models are important in many different fields, including
economics, engineering, genetics, physics and ecology. Appendix A gives a
selection of textbooks on MARSS models.

A MARSS model, with Gaussian errors, takes the form:

xt = Bxt−1 + u + wt, where wt ∼ MVN(0,Q) (1.1a)
yt = Zxt + a + vt, where vt ∼ MVN(0,R) (1.1b)

x1 ∼ MVN(π,V1) (1.1c)

The model includes random variables, parameters and data:

xt is a m× 1 column vector of the hidden states at time t. It is a realization
of the random variable Xt.

wt is a m× 1 column vector of the process errors at time t. It is a realization
from a multivariate normal random variable with mean 0 and Σ = Q.

yt is a n× 1 column vector of the observed data at time t.
vt is a n×1 column vector of the non-process errors at time t. It is a realization

from a multivariate normal random variable with mean 0 and Σ = R.
B is a parameter and is a m×m matrix.
u is a parameter and is a m× 1 column vector.
Q is a parameter and is a m×m variance-covariance matrix.
Z is a parameter and is a n×m matrix.
a is a parameter and is a n× 1 column vector.
R is a parameter and is a n× n variance-covariance matrix.
π is either a parameter or a fixed prior. It is a m× 1 matrix.
V1 is a fixed value. It is a m×m variance-covariance matrix.

The meaning of the parameters in the MARSS models depends on the
application for which the MARSS model is being used. In the case studies, we

2 1 The MARSS package

show examples of MARSS models used to analyze population count data and
animal tracking data, and Appendix A gives a selection of papers from the
ecological literature. However, the MARSS package is not specific to popula-
tion modeling applications. The functions in the MARSS package are generic
functions for fitting MARSS models have forms like:

1.1 What does the MARSS package do?

The MARSS package is designed to fit unconstrained and constrained MARSS
models. A constrained MARSS model is one in which some of the parameters
are constrained in the sense that they have fixed, free and/or shared values.
For example, let M and m be arbitrary matrix and column vector parameters.
The MARSS package allows one to specify and fit models where M and m
have shared values and fixed values. For example,

M =

 a 0.9 c
−1.2 a 0

0 c b

 and m =


d
d
e

2.2


Version 1.x of the MARSS package fits models via maximum-likelihood us-

ing a Kalman-EM algorithm1. The Kalman-EM algorithm is used because it
gives robust estimation for datasets replete with missing values and for models
with various constraints. The MARSS package also supplies functions for boot-
strap and approximate confidence intervals, parametric and non-parametric
bootstrapping, model selection (AIC and bootstrap AIC), simulation, and
bootstrap bias correction. Version 1.0 does not allow B or Z to be estimated.
Version 2.0 is currently being tested and it will allow B and Z estimation
along with less constrained forms of Q and R.

1.2 How to get started (quickly)

Install the MARSS package and then type library(MARSS) at the command
line to load the package. Read the first 2-4 pages of Chapter 3 then read
through a couple of the examples in Chapter 6. Get your data into a matrix
(not dataframe) with time going across the columns and any non-yy columns
(like year) removed. Replace any missing time steps with a missing value
holder (like NA or -99). Write your model down on paper and identify which

1 The package can also fit models via quasi-Newton methods based on R ’s optim

function. This can be especially useful for finishing off a Kalman-EM estimate
when the data to parameter ratio is high. However, when the ratio of data to pa-
rameters is low (as in many ecological applications), the quasi-Newton algorithm
tends to be fragile and sensitive to initial conditions.

1.3 Important notes about the algorithms 3

parameters correspond to B, u, Q, Z, a, and R in the MARSS model (Equa-
tion 1.1). Call the MARSS() function (Chapter 3) using your data and using
the constraint argument to specify the form of the parameters (Chapter 3
shows the options for the forms).

1.3 Important notes about the algorithms

MARSS provides maximum-likelihood via an EM algorithm using the Kalman
filter/smoother. All code is in native R . Thus the model fitting is slow (rel-
atively)2. EM algorithms will quickly get in the vicinity of the maximum
likelihood, but the final approach to the maximum is generally slow relative
to quasi-Newton methods. On the flip side, EM algorithms are quite robust to
initial conditions choices. The MARSS package allows one to use the BFGS
method in optim() to fit MARSS models. The DLM R package (search for it on
CRAN) also provides estimation of MARSS models via quasi-Newton methods
as does the SsfPack package (just do an internet search for that package).

Restricted maximum-likelihood algorithms are also available for AR-1
state-space models, both univariate (Staples et al., 2004) and multivariate
(Hinrichsen, 2009). REML can give parameter estimates with lower vari-
ance than plain maximum-likelihood algorithms. However, the algorithms for
REML when there are missing values are not currently available (although
that will probably change in the near future). Another maximum-likelihood
method is data-cloning which adapts MCMC algorithms used in Bayesian
analysis for maximum-likelihood estimation (Lele et al., 2007).

Data with cycles, from say internal dynamical interactions, are difficult to
analyze, and both REML and Kalman-EM approaches will give poor estimates
for this type of data. The slope method (Holmes, 2001), is more ad-hoc but
is relatively robust to those problems. Holmes et al. (2007) used the slope
method in a large study of data from endangered and threatened species;
Ellner and Holmes (2008) showed that the slope estimates are close to the
theoretical minimum uncertainty. However estimates using the slope method
are not easily extended to multi-variate data and it is not a true maximum-
likelihood method.

Missing values are seamlessly accommodated with the MARSS package.
Simply specify the way missing values are denoted in the data set (default is

2 In addition, the Kalman filter/smoother algorithm in MARSS is implemented ex-
actly as you see it in Shumway and Stoffer (2006, p. 331-335) (based on the original
smoother presented in Rauch (1963)). Table 2 in Koopman (1993) indicates that
this algorithm is 20-40 times less efficient than more optimal formulations; see also
(Kohn and Ansley, 1989; Koopman et al., 1999). MARSS 2.2 uses the Kalman
filter/smoother from the KFAS package when possible to speed up estimation;
this filter/smoother uses a more efficient algorithm than that in the MARSSkf()
function and is 40-100 times faster.

4 1 The MARSS package

miss.value=-99). The likelihood computations are exact and will deal appro-
priately with missing values. The presence of missing values, however, limits
the R matrix to being a diagonal matrix (if estimated) and the Z matrix to
being fixed. In addition, no innovations3 bootstrapping can be done if there
are missing values. Instead parametric bootstrapping must be used.

You should be aware that maximum-likelihood estimates of variance in
MARSS models are fundamentally biased, regardless of the algorithm used.
This bias is more severe when one or the other of R or Q is very small, and
the bias does not go to zero as sample size goes to infinity. The bias arises
because variance is constrained to be positive. Thus if R or Q is essentially
zero, the mean estimate will not be zero and thus the estimate will be biased
high while the corresponding bias of the other variance will be biased low.
You can generate unbiased variance estimates using a bootstrap estimate of
the bias. The function MARSSparamCIs() will do this. However be aware that
adding an estimated bias to a parameter estimate will lead to an increase in
the variance of your parameter estimate. The amount of variance added will
depend on sample size.

You should also be aware that mis-specification of the prior on the initial
states can have catastrophic affects on your parameter estimates if you prior
conflicts with the distribution of the initial states implied by the MARSS
model. These affects can be very difficult to detect because the model will
appear to well-fitted. Unless you have a good idea of what the parameters
should be, you might know that your prior conflicts. The most common prob-
lems, we have found are the following. 1) The correlation structure in the prior
(whether diffuse or not) does match the correlation structure implied by the
MARSS model. For example, you specify a diagonal V0 (independent states),
but the implied distribution has correlations. 2) The correlation structure in
the prior does not match the structure implied by constraints on x0. For ex-
ample, you specify that all values in x0 are shared, yet you specify that V0 is
diagonal (independent). 3) You specify that V0=0 and estimate x0

0 for your
prior, but your model does not ”run backwards” robustly so you cannot esti-
mate x0

0. For example, you have a model with a non-diagonal B matrix, this
model needs the x to be constrained by data, but x0

0 has no y0 to constrain it.
You might get around this by specifying your prior as x0

1. You can get around
these problems sometimes by using a diffuse prior (using method="BFGS" and
control$diffuse=TRUE) but you do not know the correlation structure of
x0

1 then your diffuse prior will conflict with the model. The other way to
get around the problem is to set V0=0 and estimate x0

1 or x0
0 as the prior.

Whether to use x0
1 or x0

0 depends on the model.

3 referring to the non-parametric bootstrap used in the package

1.4 Troubleshooting 5

1.4 Troubleshooting

There are two numerical errors and warnings that you may see when fitting
MARSS models: ill-conditioning and degeneracy. The Kalman and EM algo-
rithms need inverses of matrices. If those matrices become ill-conditioned, for
example all elements are close to the same value, then the algorithm becomes
unstable. MARSS will print warning messages if the algorithm is becoming
unstable and you can set control$trace=1, to see details of where the algo-
rithm is becoming unstable. Whenever possible, you should avoid using shared
π values in your model4. The way our algorithm deals with V1 tends to make
this case unstable, especially if R is not diagonal. In general, estimation of
a non-diagonal R is more difficult, more prone to ill-conditioning, and more
data-hungry.

The second numerical error you may see is a degeneracy warning. This
means that one of the elements on the diagonal of your Q or R matrix
are going to zero (are degenerate). It will take the EM algorithm forever
to get to zero. BFGS will have the same problem, although it will often
get a bit closer to the degenerate solution. If you are using method="kem",
MARSS will warn you if it looks like the solution is degenerate. If you use
control=list(allow.degen=TRUE), the EM algorithm will attempt to set
the degenerate variances to zero (instead of trying to get to zero using an
infinite number of iterations). If you still get the degenerate warnings, look at
your data for anything obvious, like having only one data point in your time
series or some really extreme outlier. Then try running the EM algorithm
longer using control=list(maxit=something big).

The algorithms in the MARSS 1.0 package are designed for cases where
the Q and R diagonals are all non-minuscule. For example, the EM update
equation for U will grind to a halt (not update U) if Q is tiny (like 1E-7).
Conversely, the BFGS equations are likely to miss the maximum-likelihood
when R is tiny because then the likelihood surface becomes hyper-sensitive
to π. The solution is to use the degenerate likelihood function for the likeli-
hood calculation and the EM update equations. MARSS will implement this
automatically when Q or R diagonal elements are set to zero and will try
setting Q and R terms to zero automatically if control$allow.degen=TRUE.
One odd case can occur when you set R goes to zero (a matrix of zeros), but
you are estimating x0 (the prior for x). If control$kf.x0="x10" then x0 is
defined as the prior at t = 1. Then if x0 ≡ y1 as R goes to zero, and the
log-likelihood goes to infinity. But if you set R = 0, the log-likelihood will be
finite. The reason is that R ≈ 0 and R = 0 specify different likelihoods. In
the first, the determinant R will appear, and this goes to positive infinity as
R goes to zero. In the second case, R does not appear in the likelihood and
so the determinant of R does not appear. If some elements of the diagonal
of R are going to zero, you should be suspect of the parameter estimates.

4 An example of a π with shared values is π =
[a
a
a

]
.

6 1 The MARSS package

Sometimes the structure of your data, e.g. one data value followed by a long
string of missing values, is causing an odd spike in the likelihood at R ≈ 0.
Try manually setting R equal to zero to get the correct log-likelihood5

1.5 Other related packages

Packages that will do Kalman filtering and smoothing are very common, but
packages that estimate MARSS models, especially constrained MARSS mod-
els, are much less common. The following are those with which we are familiar,
however there are certainly more packages for estimating MARSS models in
the engineering and economics of which we are unfamiliar. The MARSS pack-
age is unusual in that it uses an EM algorithm (sensu Shumway and Stoffer)
for maximizing the likelihood as opposed to a Newton-esque method (esp.
BFGS). The package is also unusual in that it allows you to specify the initial
conditions at t = 0 or t = 1, allows degenerate models (with diagonal elements
of R or Q equal to zero, and allows one to specify a diverse array of models
with shared and fixed parameter elements.

DLM DLM is an R package for fitting MARSS models. Our impression is that
it is mainly Bayesian focused but it does allow MLE estimation via the
optim() function. It now has a book also, Dynamic Linear Models with
R by Petris et al.

sspirs sspirs an R package for fitting ARSS (univariate) models with Gaussian,
Poisson and binomial error distributions.

dse dse (Dynamic Systems Estimation) is a R package for multivariate Gaus-
sian state space models with a focus on ARMA models.

SsfPack SsfPack is a package for Ox/Splus that fits constrained multivariate
Gaussian state space models using mainly (it seems) the BFGS algorithm
but the newer versions support other types of maximization. SsfPack is
very flexible and written in C to be fast. It has been used extensively
on statistical finance problems and is optimized for dealing with large
(financial) data sets. It is used and documented in Time Series Analysis
by State Space Methods by Durbin and Koopman, An Introduction to
State Space Time Series Analysis by Commandeur and Koopman, and
Statistical Algorithms for Models in State Space Form: SsfPack 3.0, by
Koopman, Shephard, and Doornik.

Brodgar The Brodgar software was developed by Alain Zuur to do (among
many other things) dynamic factor analysis, which involves a special case
of a MARSS model. The methods and many example analyses are given
in Analyzing Ecological Data by Zuur, Ieno and Smith. This is the one

5 The likelihood returned when R ≈ 0 is not incorrect. It is just not the likelihood
that you probably want. You want the likelihood where the R term is dropped
because it is zero.

1.5 Other related packages 7

package that we are aware of that also uses the same (or very similar) EM
algorithm used in our MARSS package.

eViews eViews is a commercial economics software that will estimate at least
some types of MARSS models.

KFAS The KFAS R package provides a fast Kalman filter and smoother. Ex-
amples in the package show how to fit MARSS models using the KFAS
functions and the optim() function for maximization using Newton algo-
rithms. The MARSS package uses the filter and smoother functions from
the KFAS package when feasible; the KFAS package uses the initial con-
dition set at t = 1 and cannot be used when the initial condition is set at
t = 0.

2

Overview of the package functions

The MARSS package is object-based. It has two main types of objects: a
model object (class marssm) and a maximum-likelihood fitted model object
(class marssMLE). A marssm object specifies the structure of the model to
be fitted. It is an R code version of the MARSS equation (Equation 1.1).
A marssMLE object specifies both the model and the information necessary
for fitting (initial conditions, controls, method). If the model has been fitted,
the marssMLE object will also have the parameter estimates and (optionally)
confidence intervals and bias.

2.1 The MARSS() function

The function MARSS() is an interface to the core fitting functions in the
MARSS package. It allows a user to fit a MARSS model using a list to de-
scribe the model structure. It returns marssm and marssMLE objects which
the user can later use in other functions, e.g. simulating or computing boot-
strap confidence intervals.

MLEobj=MARSS(data, constraint=list(), ..., fit=TRUE) This function
will fit a MARSS model to the data using a constraint list which is a
list describing the structure of the model parameter matrices. The default
model has a one-to-one correspondence between the state processes and
observation time series (Z is the identity matrix). The default has a di-
agonal observation error matrix (R) and an unconstrained process-error
matrix (Q). The output is a marssMLE object where the estimated pa-
rameter matrices are in MLEobj$par. If fit=FALSE, it returns a minimal
marssMLE object that is ready for passing to a fitting function (below)
but with no par element.

10 2 Overview of the package functions

2.2 Core functions for fitting a MARSS model

The following core functions are designed to work with ‘unfitted’ marssMLE
objects, that is a marssMLE object without the par element. Users do not
normally need to call the MARSSkem or MARSSoptim functions since MARSS()
will call those. Below MLEobj means the argument is a marssMLE object. Note,
these functions can be called with a marssMLE object with a par element,
but these functions will overwrite that element.

MLEobj=MARSSkem(MLEobj) This will fit a MARSS model via the Kalman-
EM algorithm to the data using a properly specified marssMLE object,
which has data, the marssm object and the necessary initial condition and
control elements. See the appendix on the object structures in the MARSS
package. MARSSkem does no error-checking. See is.marssMLE(). MARSSkem
uses MARSSkf described below.

MLEobj=MARSSoptim(MLEobj) This will fit a MARSS model via the BFGS al-
gorithm provided in optim(). This requires a properly specified marssMLE
object, such as would be passed to MARSSkem.

MLEobj=MARSSmcinit(MLEobj) This will perform a Monte Carlo initial con-
ditions search and update the marssMLE object with the best initial con-
ditions from the search.

is.marssMLE(MLEobj) This will check that a marssMLE object is properly
specified and ready for fitting. This should be called before MARSSkem
or MARSSoptim is called. This function is not typically needed if using
MARSS() since MARSS() builds the model object for the user and does
error-checking on model structure.

2.3 Functions for a fitted marssMLE object

The following functions use a marssMLE object that has a populated par
element, i.e. a marssMLE object returned from one of the fitting functions
(MARSS, MARSSkem, MARSSoptim). Below modelObj means the argument is a
marssm object and MLEobj means the argument is a marssMLE object. Type
?function.name to see information on function usage and examples.

kf=MARSSkf(data, parList, ...) This will compute the expected values of
the hidden states given data via the Kalman filter (to produce estimates
conditioned on 1 : t− 1) and the Kalman smoother (to produce estimates
conditioned on 1 : T). The function also returns the exact likelihood of the
data conditioned on parList. A variety of other Kalman filter/smoother
information is also output (kf is a list of output); see ?MARSSkf for more
details.

MLEobj=MARSSaic(MLEobj) This adds model selection criteria, AIC, AICc,
and AICb, to a marssMLE object.

2.4 Functions for marssm objects 11

boot=MARSSboot(MLEobj) This returns a list containing bootstrapped pa-
rameters and data via parametric or innovations bootstrapping.

MLEobj=MARSShessian(MLEobj) This adds a numerically estimated Hessian
matrix to a marssMLE object.

MLEobj=MARSSparamCIs(MLEobj) This adds standard errors, confidence in-
tervals, and bootstrap estimated bias for the maximum-likelihood param-
eters using bootstrapping or the Hessian to the passed in marssMLE ob-
ject.

sim.data=MARSSsimulate(parList) This returns simulated data from a MARSS
model specified via a list of parameter matrices in parList (this is a list
with elements Q, R, U, etc). Typically one would pass in parList using the
par element in an marssMLE object (i.e., MLEobj$par), but you could
also construct the list manually.

paramVec=MARSSvectorizeparam(MLEobj) This returns the estimated (and
only the estimated) parameters as a vector. This is useful for storing the
results of simulations and for writing functions that fit MARSS models
using R’s optim function.

new.MLEobj=MARSSvectorizeparam(MLEobj, paramVec) This will return a
marssMLE object in which the estimated parameters (which are in MLEobj$par
along with the fixed values) are replaced with the values in paramVec.

2.4 Functions for marssm objects

is.marssm(modelObj) This will check that the free and fixed matrices in a
marssm object are properly specified. This function is not typically needed
if using MARSS() since MARSS() builds the marssm object for the user and
does error-checking on model structure.

summary(modelObj) This will print the model parameter matrices showing
the fixed values (in parentheses) and the location of the estimated ele-
ments. The estimated elements are shown as g1, g2, g3, ... which indicates
which elements are shared (i.e., forced to have the same value). For ex-
ample, an i.i.d. R matrix would appear as a diagonal matrix with just g1
on the diagonal.

3

The MARSS() function

The MARSS() function is an interface to the core functions and allows users to
fit MARSS models using a list to specify the model structure. The MARSS
model takes the form

xt = Bxt−1 + u + wt, where wt ∼ MVN(0,Q) (3.1a)
yt = Zxt + a + vt, where vt ∼ MVN(0,R) (3.1b)

x1 ∼ MVN(π,V1) (3.1c)

The y is a n×T matrix of observations and the x is a m×T matrix of hidden
states. For example, a y data matrix of 3 inputs (n = 3) measured for 10 time
steps would look like

y =

1 2 −99 −99 3.2 ... 8
2 5 3 −99 5.1 ... 5
1 −99 2 2.2 −99 ... 7


where -99 denotes a missing value. x might look like (here m = 2):

x =
[

0.8 2.2 3 2.8 3.2 ... 7.1
1.5 2.5 2.5 2.2 3.1 ... 6

]
In the process equation, B is a m×m matrix, u and wt are m× 1 matrices,
and Q is a m × m variance-covariance matrix for the wt process errors. In
the observation equation, Z is a n×m design matrix of zeros and ones where
the row sums equal one1. Z specifies which observation time series, yi,1:T , is
associated with which hidden state process, xj,1:T . a and vt are n×1 matrices,
and R is a n× n variance-covariance matrix for the vt observation errors.

In the MARSS() function, the user specifies the model by passing in a
parameter constraint list:

1 In our examples, Z is a design matrix but it can actually be any fixed matrix.

14 3 The MARSS() function

MARSS(data, constraint=list(Z=Z.constraint, B=B.constraint,

U=U.constraint, Q=Q.constraint, A=A.constraint,

R=R.constraint, x0=pi.constraint, V0=V1.constraint))

data must be a n×T matrix, that is time goes across columns. The argument
constraint is a list, where the list elements for each model parameter can
be a text string, vector of factors or matrix that specifies the form of the
parameter. The defaults are

Z.constraint="identity" each y in y corresponds to one x in x
B.constraint="identity" no interactions between the x’s in x
U.constraint="unequal" the u’s in u are all different
Q.constraint="diagonal and unequal" process errors are independent
but have different variances
R.constraint="diagonal and equal" the observations are i.i.d.
A.constraint="scaling" a is a set of scaling factors
pi.constraint="unequal" all initial states are different
V0.constraint="zero" the initial condition x1 is fixed but unknown

Examples of the other possible constraint options for each parameter are
listed below. We show the forms using m = 3 (the number of hidden state
processes) and n = 3 (number of observation time series).

3.1 Process equation constraint options

3.1.1 B constraints

In MARSS 1.0, B must be fixed. There are two ways that B can be fixed:

B.constraint="identity" The B matrix is the identity matrix:1 0 0
0 1 0
0 0 1


B.constraint=matrix(..., nrow=m, ncol=m) Passing in a m × m nu-
meric matrix, means that B is fixed to the values in the matrix. The matrix
must be numeric and all eigenvalues must fall within the unit circle2. Using
the string “zero”, sets B = 0.

3.1.2 u constraints

U.constraint="equal" There is only one value in u:uu
u


2 meaning all(abs(eigen(B)$values)>=1).

3.1 Process equation constraint options 15

U.constraint="unequal" or U.constraint="unconstrained" There are
m values in u: u1

u2

u3


U.constraint=factor(c(...)) Here the constraint is specified as a length
m character or numeric vector of class factor. The vector of factors specifies
which values in u are shared. U.constraint=factor(c(1,1,2)) means
that u has the following structure:u1

u1

u2


There are two values in u in this case. The factor levels can be either nu-
meric or character. c(1,1,2) is the same as c("north","north","south").

U.constraint=matrix(..., nrow=m, ncol=1) Passing in a m × 1 nu-
meric matrix, means that u is fixed to the values in the matrix. In MARSS
1.0, u cannot vary in time, even if fixed. u can be set to all zeros (a m× 1
matrix) by setting U.constraint="zero"; you might want to use this if
you de-trended your data.

U.constraint=matrix(..., nrow=m, ncol=1) Passing in a m× 1 char-
acter matrix, means that all elements in u are estimated. Those elements
that share a name will be forced to be the same value.

You can also pass in a matrix with fixed values and NAs. For example,
matrix(c(0.1, NA, NA)):  0.1

NA
NA


The fixed values will be set to the fixed values and the elements specified
by NAs will be estimated. The estimated elements are independent and
not forced to be equal.

3.1.3 Q constraints

Q.constraint="diagonal and equal" There is only one process variance
value in this case: σ2 0 0

0 σ2 0
0 0 σ2


Q.constraint="diagonal and unequal" There are m process variance
values in this case: σ2

1 0 0
0 σ2

2 0
0 0 σ2

3



16 3 The MARSS() function

Q.constraint="unconstrained" There are values on the diagonal and
the off-diagonals of Q and the variances and covariances are all different: σ2

1 σ1,2 σ1,3

σ1,2 σ2
2 σ2,3

σ1,3 σ2,3 σ2
3


There are m process variances and (m2−m)/2 covariances in this case, so
(m2 +m)/2 values to be estimated.

Q.constraint="equalvarcov" There is one process variance and one co-
variance: σ2 β β

β σ2 β
β β σ2


Q.constraint=as.factor(c(...)) The constraint is specified as a length
m character or numeric vector of class factor. This specifies that Q is
diagonal and the vector of factors specifies which values on the diagonal
are shared. For example, Q.constraint=factor(c(2,1,2)) means that
Q takes the form: σ2

2 0 0
0 σ2

1 0
0 0 σ2

2


Q.constraint=factor(c(1,1,2)) means that Q takes the form:σ2

1 0 0
0 σ2

1 0
0 0 σ2

2


The factor levels can be either numeric or character. c(1,1,2) is the same
as c("north","north","south").

Q.constraint=matrix(..., nrow=m, ncol=m) Passing in a m ×m ma-
trix, means that Q is fixed to the values in the matrix. The matrix must
be numeric. Note if m = 1, you still need to wrap its value in matrix() so
that its class is matrix.

You can also pass in a diagonal matrix with fixed values and NAs:NA 0 0
0 0.1 0
0 0 NA


The fixed values will be set to the fixed values and the NAs will be es-
timated; the estimates are independent and not forced to be equal. The
matrix must be diagonal (0s on the off-diagonals).

3.1 Process equation constraint options 17

3.1.4 π constraints

This sets the constraints on the initial conditions, x1. pi.constraint has the
following options:

pi.constraint="equal" There is only initial state value.ππ
π


Warning: specifying shared values in π will tend to produce ill-conditioned
matrices in the algorithm and lead to numerical instability. Avoid using
pi.constraint="equal" if possible.

pi.constraint="unequal" or pi.constraint="unconstrained" These
are equivalent. There are m initial state parameters.π1

π2

π3


pi.constraint=factor(c(...)) The constraint is specified is a length m
character or numeric vector of class factor. The vector of factors specifies
which initial states have the same value. For example, factor(c(1,1,2))
means that π takes the form: π1

π1

π2


There are two initial state parameters in this case. The factor levels can
be either numeric or character. c(1,1,2) is the same as c("n","n","s").
Warning: specifying shared values in π will tend to produce ill-conditioned
matrices in the algorithm and lead to numerical instability. Avoid if pos-
sible.

pi.constraint=matrix(..., nrow=m, ncol=1) Passing in a m × 1 nu-
meric matrix, means that the initial states are fixed to the values in the ma-
trix. You can set the initial states to zero by using pi.constraint="zero".

You can also pass in a matrix with fixed values and NAs: 10
NA
NA


The fixed values will be set to the fixed values and the values specified by
NAs will be estimated.

18 3 The MARSS() function

3.1.5 V1 constraints

The initial state variance must be fixed. The default behavior is to treat x1

as fixed but unknown3. In this case, V1=0. You can also set V1 to a non-zero
value but in that case π must be fixed. This would translate to using a fixed
prior for the initial states.

V0.constraint=matrix(..., nrow=m, ncol=m) Passing in a m×m ma-
trix, means that the initial state variance is fixed to the values in the
matrix. The matrix must be numeric and be a proper variance-covariance
matrix.

In general, unless a fixed prior is desired, users should just leave off x0.constraint
and V0.constraint from the constraint list and use the default behavior
which is x1 treated as fixed but unknown.

3.2 Observation equation constraints

3.2.1 Z constraint

In the MARSS() function, Z is normally a n ×m design matrix that specifies
which xi hidden state time series corresponds to which yj time series4. In this
case, each yj time series (each row in y) corresponds to one and only one xi
time series (row in x). The Z constraint is normally specified as a length n
vector of class factor. The i-th element of this vector specifies which row in x
that the i-th row in y corresponds to. Below are some examples of Z matrices;
see Chapter 6 and the case studies chapters for more examples.

Z.constraint=factor(c(1,1,1)) All y time series are observing the
same (and only) hidden state trajectory x (n = 3 and m = 1):

Z =

1
1
1


Z.constraint=factor(c(1,2,3)) Each time series in y corresponds to a
different hidden state trajectory. This is the default Z constraint and in
this case n = m:

Z =

1 0 0
0 1 0
0 0 1


3 Shumway and Stoffer use x at t = 0 as the initial state, but we follow Ghahra-

mani’s approach and use x at t = 1 as the initial state. Both approaches give the
same answer but the EM update equations are slightly different.

4 However, you can pass in other fixed but non-design Z matrices.

3.2 Observation equation constraints 19

Z.constraint=factor(c(1,1,2)) The first two time series in y corre-
sponds to one hidden state trajectory and the third y time series corre-
sponds to a different hidden state trajectory. Here n = 3 and m = 2:

Z =

 1 0
1 0
0 1


The Z constraint can be specified using either numeric or character factor
levels. c(1,1,2) is the same as c("north","north","south")

Z.constraint="identity" This is the default behavior. This means Z
is a n × n identity matrix and m = n. If n = 3, it is the same as
Z.constraint=factor(c(1,2,3)).

Z.constraint=matrix(..., nrow=n, ncol=m) Passing in a n × m nu-
meric matrix, means that Z is fixed to the values in the matrix. The
matrix must be numeric but it does not need to be a design matrix.

3.2.2 a constraint

Using the MARSS() function, only A.constraint="scaling" or a fixed a are
allowed. If “scaling”, a is a scaling factor without any direct meaning (it just
says how the time series in y scale relative to each other). Unless you know
the correct scaling, because say you simulated the data or you de-meaned the
data, you should use the default. To set a to a fixed value (not estimated),
use A.constraint=matrix(..., nrow=n, ncol=m). The matrix must be nu-
meric. To fix a to zero, use A.constraint="zero".

Note, you can circumvent the restriction on a by passing in a matrix with
NAs (for estimated elements) or passing in a fixed/free pair. But be aware
that it is very easy to make your model unsolvable (an infinite number of
solutions)—if for example you try to estimate more than ni − 1 a’s, where
ni is the number of y’s for one x. If Z is identity, then ni = 1 and you can
estimate no a’s; all must be fixed.

3.2.3 R constraint

The R constraint is completely analogous to the Q constraint, except that it
is n×n instead of m×m. Its allowable constraints are affected by the presence
of missing data points in y. If data are missing, then R must be diagonal.

4

Model specification in the core functions

Most users will not directly work with the core functions nor build marssm
objects from scratch. Instead, they will usually interact with the core func-
tions via the function MARSS() described in Chapter 3. With the MARSS()
function, the user specifies the model structure with text strings (“diagonal”,
“unconstrained”, etc.) and MARSS() builds the marssm object. However, a ba-
sic understanding of the structure of marssm objects is necessary if one wants
to fit more flexible models or to interact directly with the core functions.

The first step of model specification is to write down (e.g. on paper) the
model in matrix form (Equation 1.1) with notes on the dimensions (rows
and columns) of each parameter and of x and y. In the core functions, the
parameters in the MARSS model must be passed as matrices of the correct
dimension, and the parameters in the R functions correspond one-to-one to
the mathematical equation. For example, u must be passed in as a matrix of
dimension c(m,1). The function will return an error if anything else is passed
in (including a matrix with dim=c(1,m) or a vector of length m).

4.1 The fixed and free components of the model
parameters

In a marssm object, each parameter must be specified by a pair of matrices:
free which gives the location and sharing of the estimated elements in the
parameter matrix and fixed which specifies the location and value of the fixed
elements in the parameter matrix. For example, Q is specified by free$Q and
fixed$Q.

4.1.1 The fixed matrices

The fixed matrix specifies the values (numeric) of the fixed (meaning not
estimated) elements. In the fixed matrix, the free (meaning estimated or fitted)

22 4 Model specification in the core functions

elements are denoted with NA. The following shows some common examples
of the fixed matrix using fixed$Q as the example. Each of the other fixed
matrices for the other parameters uses the same pattern.

Q is unconstrained, so there are no fixed values

fixed$Q =

NA NA NA
NA NA NA
NA NA NA


Q is a diagonal matrix, so the off-diagonals are fixed at 0. The diagonal
elements will be estimated.

fixed$Q =

NA 0 0
0 NA 0
0 0 NA


Q is fixed, i.e. will not be estimated rather all values in the Q matrix are
fixed.

fixed$Q =

0.1 0 0
0 0.1 0
0 0 0.1


4.1.2 The free matrices

The free matrix specifies which elements are estimated and specifies how (and
whether) the free elements are shared. In the free matrix, the fixed elements
are denoted NA. The following shows some common examples of free using
free$Q as the example. free can be passed in as a character matrix or a
numeric matrix, but if numeric, the numeric will be changed to character
(thus 0 becomes “0” and is the name “0” not the number 0).

Q is a diagonal matrix in which there is only one, shared, value on the
diagonal. Thus there is only one Q parameter.

free$Q =

 1 NA NA
NA 1 NA
NA NA 1

 or

 “a” NA NA
NA “a” NA
NA NA “a”


Here “1” does not mean “number 1” but rather that the name of the shared
parameter is “1”. On the example at the right, the name of the shared
parameter is “a”.
Q is a diagonal matrix in which each of the diagonal elements are different.

free$Q =

 1 NA NA
NA 2 NA
NA NA 3

 or

“north” NA NA
NA “middle” NA
NA NA “south”



4.2 Limits on the model forms that can be fit 23

Q has one value on the diagonal and another one on the off-diagonals.
There are no fixed values in Q.

free$Q =

1 2 2
2 1 2
2 2 1

 or

“a” “b” “b”
“b” “a” “b”
“b” “b” “a”


Q is unconstrained. There are no fixed values in Q in this case. Note that
since, Q is a variance-covariance matrix, it must be symmetric across the
diagonal.

free$Q =

1 2 3
2 4 5
3 5 6



4.2 Limits on the model forms that can be fit

MARSS version 1.0 will allow any combination of fixed and shared values for
a and u, but for R, Q, B, and Z there are limits to what forms these matrices
can take. These limitations have to do with the way the EM algorithm is
coded for version 1.0. Version 2.0 will remove many of these restrictions.

� R and Q can be fixed, unconstrained, diagonal with any pattern of fixed
and shared values on the diagonal, or a matrix with one estimated value
on the diagonal and another estimated value for the off-diagonals.

� If there are missing values in the data, R must be diagonal (or fixed).
� B cannot be estimated. It must be fixed but it need not be diagonal.

However, all its eigen values must fall on the unit circle1.
� Z cannot be estimated. It must be fixed. Although in all our examples, Z

is a design matrix (meaning only 0s and 1s and all row sums equal to 1),
Z is not required to be a design matrix.

The other limitation is that one must specify a model that has only one
solution. The core MARSS functions will allow you to attempt to fit an im-
proper model (one with multiple solutions). If you do this accidentally, it may
or may not be obvious that you have a problem. The MARSS estimation func-
tions may chug along happily and return a solution. Careful thought about
your model structure and the structure of the estimated parameter matrices
will help you determine if your model is under-constrained and unsolvable.
Basically, take care when using MARSS core functions directly and remember
that they will not prevent you from fitting an under-constrained model. This
is not a problem when using the function MARSS(). The MARSS() function
includes error-checks that are designed to prevent users from specifying an
under-constrained models (for example it only allows a to be fixed or act like
a scaling factor.
1 This means that the absolute value of all the eigenvalues must be less than or

equal to 1 (all(abs(eigen(B)$values)<=1)).

5

Algorithms used in the MARSS package

5.1 Kalman filter and smoother

The MARSS model (Equation 1.1) is a linear dynamical system in discrete
time. In 1960, Rudolf Kalman published the Kalman filter (Kalman, 1960), a
recursive algorithm that solves for the expected value of the hidden state(s) at
time t conditioned on the data up to time t: E(Xt|yt1). The Kalman filter gives
the optimal (lowest mean square error) estimate of the unobserved xt based
on the observed data up to time t for this class of linear dynamical system.
The Kalman smoother (Rauch et al., 1965) solves for the expected value of
the hidden state(s) conditioned on all the data: E(Xt|yT1). If the errors in the
stochastic process are Gaussian, then the estimators from the Kalman filter
and smoother are also the maximum-likelihood estimates.

However, even if the the errors are not Gaussian, the estimators are opti-
mal in the sense that they are estimators with the least variability possible.
This robustness is one reason the Kalman filter is so powerful—it provides
well-behaving estimates of the hidden states for all kinds of multivariate au-
toregressive processes, not just Gaussian processes. The Kalman filter and
smoother are widely used in time-series analysis, and there are many text-
books covering it and its applications. In the interest of giving the reader a
single point of reference, we use Shumway and Stoffer (2006) as our reference
and adopt their notation (for the most part). The algorithms used in MARSS
are not computationally efficient; see Koopman et al. (1999, sec. 4.3) for a
more efficient Kalman filter implementation.

The MARSSkf function provides the Kalman filter and smoother and has
the following outputs:

xtt1 The expected value of Xt conditioned on the data up to time t− 1.
xtt The expected value of Xt conditioned on the data up to time t.
xtT The expected value of Xt conditioned on all the data from time 1 to T .

This the smoothed state estimate.

26 5 Algorithms used in the MARSS package

Vtt1 The variance of Xt conditioned on the data up to time t− 1. Denoted
P t−1
t in section 6.2 in Shumway and Stoffer (2006).

Vtt The variance of Xt conditioned on the data up to time t. Denoted P tt
in section 6.2 in Shumway and Stoffer (2006).

VtT The variance of Xt conditioned on all the data from time 1 to T .
Vtt1T The covariance of Xt and Xt−1 conditioned on all the data, 1 to T .
Kt The Kalman gain. This is part of the update equations and relates to the

amount xtt1 is updated by the data at time t to produce xtt.
J This is similar to the Kalman gain but is part of the Kalman smoother.

See Equation 6.49 in Shumway and Stoffer (2006).
Innov This has the innovations at time t, defined as εt ≡ yt- E(Yt). These are

the residuals, the difference between the data and their predicted values.
See Equation 6.24 in Shumway and Stoffer (2006).

Sigma This has the Σt, the variance-covariance matrices for the innovations
at time t. This is used for the calculation of confidence intervals, the s.e.
on the state estimates and the likelihood. See Equation 6.25 in Shumway
and Stoffer (2006) for the Σt calculation.

logLik The log-likelihood of the data conditioned on the model parameters.
See the section below on the likelihood calculation.

5.2 The exact likelihood

The likelihood of the data given a set of MARSS parameters is part of the
output of the MARSSkf function. The likelihood computation is based on the
innovations form of the likelihood (Schweppe, 1965) and uses the output from
the Kalman filter:

log L(Θ|data) = − N

2 log(2π)
− 1

2

(
T∑
t=1

log |Σt|+
T∑
t=1

(εt)>Σ−1
t εt

)
(5.1)

where N is the total number of data points, εt is the innovations at time
t and |Σt| is the determinant of the innovations variance-covariance matrix
at time t. Reference Equation 6.62 in Shumway and Stoffer (2006). However
there are a few differences between the log-likelihood output by MARSSkf and
that described in Shumway and Stoffer (2006).

The standard likelihood calculation (Equation 6.62 in Shumway and Stoffer
(2006)) is biased when there are missing values in the data, and the missing
data modifications discussed in Section 6.4 in Shumway and Stoffer (2006) do
not correct for this bias. Harvey (1989), Section 3.4.7, discusses at length that
the standard missing values correction leads to an inexact likelihood when
there are missing values. The bias is minor if there are few missing values, but
it becomes severe as the number of missing values increases. Many ecological
datasets may have over 25% missing values and this level of missing values

5.3 Maximum-likelihood parameter estimation 27

leads to a very biased likelihood if one uses the inexact formula. Harvey (1989)
provides some non-trivial ways to compute the exact likelihood.

We use instead the exact likelihood correction for missing values that is
presented in Section 12.3 in Brockwell and Davis (1991). This solution is
straight-forward to implement. The correction involves the following changes
to εt and Σt in the Equation 5.1. Suppose the value yi,t is missing. First, the
corresponding i-th value of εt is set to 0. Second, the i-th diagonal value of
Σt is set to 1 and the off-diagonal elements on the i-th column and i-th row
are set to 0.

5.3 Maximum-likelihood parameter estimation

5.3.1 Kalman-EM algorithm

The MARSS package provides a maximum-likelihood algorithm which uses
an Expectation-Maximization (EM) algorithm (function MARSSkem) with the
Kalman smoother. EM algorithms are widely used algorithms that extend
maximum-likelihood estimation to cases where there are hidden random vari-
ables in a model (Dempster et al., 1977; Harvey, 1989; Harvey and Shephard,
1993; McLachlan and Krishnan, 2008).

The EM algorithm finds the maximum-likelihood estimates of the parame-
ters in a MARSS model using an iterative process. Starting with an initial set
of parameters1, which we will denote Θ̂1, an updated parameter set Θ̂2 is ob-
taining by finding the Θ̂2 that maximizes the expected value of the likelihood
over the distribution of the states (X) conditioned on Θ̂1:

Θ̂2 = arg max
Θ

EX|Θ̂1
[logL(Θ|YT

1 = yT1 ,X)] (5.2)

Then using Θ̂2 in place of Θ̂1 in Equation (5.2), an updated parameter set Θ̂3 is
calculated. This is repeated until the expected log-likelihood stops increasing
(or increases less than some set tolerance level).

Implementing this algorithm is straight-forward, hence its popularity.

1. Set an initial set of parameters, Θ̂1

2. E step: using the model for the hidden states (X) and Θ̂1, calculate the
expected values of X conditioned on all the data yT1 ; this is xtT output
by MARSSkf. Also calculate expected values of any functions of X, g(X),
that appear in your expected log-likelihood function.

3. M step: put those E(X|YT
1 = yT1 , Θ̂1) and E(g(X)|YT

1 = yT1 , Θ̂1) into
your expected log-likelihood function in place of X (and g(X)) and max-
imize with respect to Θ. This gives you Θ̂2.

1 You can choose these however you wish, however choosing something not too far
off from the correct values will make the algorithm go faster.

28 5 Algorithms used in the MARSS package

4. Repeat the E and M steps until the log likelihood stops increasing.

The EM equations in our algorithm, which we term the Kalman-EM algo-
rithm, are extensions of those in Shumway and Stoffer (1982) and Ghahramani
and Hinton (1996). Our Kalman-EM algorithm is an extended version because
our algorithm is for cases where there are constraints within the parameter
matrices (shared values, diagonal structure, block-diagonal structure, ...) and
where there are fixed values within the parameter matrices. Holmes (2010)
gives the full derivation of our EM algorithm.

The EM algorithm is a hill-climbing algorithm and like all hill-climbing
algorithms can get stuck on local maxima. The MARSS package includes
a Monte-Carlo initial conditions searcher (function MARSSmcinit) based on
Biernacki et al. (2003) to minimize this problem. EM algorithms are also
known to get close to the maximum very quickly but then creep toward the
absolute maximum. Quasi-Newton methods find the absolute maximum much
faster, but they can be sensitive to initial conditions. We have found that with
MARSS models, quasi-Newton methods (at least using optim) will sometimes
converge far from the maximum even when started close to the known maxi-
mum. For this reason, the Monte Carlo initial condition search that works for
EM algorithms may not work for Newton algorithms.

5.4 Parametric and innovations bootstrapping

Bootstrapping can be used to construct frequentist confidence intervals on
the parameter estimates (Stoffer and Wall, 1991) and to compute the small-
sample AIC corrector for MARSS models (Cavanaugh and Shumway, 1997);
the functions MARSSparamCIs and MARSSaic do these computations.

The MARSSboot function provides both parametric and innovations boot-
strapping of MARSS models. The innovations bootstrap algorithm by Stoffer
and Wall (1991) bootstraps the model residuals (the innovations). This is a
semi-parametric bootstrap since is uses, partially, the maximum-likelihood pa-
rameter estimates. This algorithm cannot be used if there are missing values
in the data. Also for short time series, it gives biased bootstraps because one
cannot resample the first few innovations.

MARSSboot also provides a fully parametric bootstrap. This uses the
maximum-likelihood MARSS parameters to simulate data from which boot-
strap parameter estimates are obtained. Our research (Holmes and Ward,
2010) indicates that this provides unbiased bootstrap parameter estimates,
and it works with datasets with missing values. Lastly, MARSSboot also out-
put parameters sampled from a numerically estimated Hessian matrix.

5.6 Model selection 29

5.5 Simulation and forecasting

The MARSSsimulate function simulates from a MARSS model using a list
of parameter matrices. It use the mvrnorm function to produce draws of the
process and observation errors from multivariate normal distributions for each
time step.

5.6 Model selection

The package provides a MARSSaic function for computing AIC, AICc and
AICb. The latter is a small-sample corrector for autoregressive state-space
models. The bias problem with AIC and AICc for short time-series data
has been shown in Cavanaugh and Shumway (1997) and Holmes and Ward
(2010). AIC and AICc tend to select overly complex MARSS models when
the time-series data are short. AICb corrects this bias. The algorithm for a
non-parametric AICb is given in Cavanaugh and Shumway (1997). Their al-
gorithm uses the innovations bootstrap (Stoffer and Wall, 1991), which means
it cannot be used when there are missing data. We added a parametric AICb
(Holmes and Ward, 2010), which uses a parametric bootstrap. This algorithm
allows one to compute AICb when there are missing data and it provides
unbiased AIC even for short time series. See Holmes and Ward (2010) for
discussion and testing of parametric AICb for MARSS models.

AICb is comprised of the familiar AIC fit term, −2 logL, plus a penalty
term that is the mean difference between the log likelihood the data under the
bootstrapped maximum-likelihood parameter estimates and the log likelihood
of the data under the original maximum-likelihood parameter estimate:

AICb = −2 log L(Θ̂|y) + 2
(

1
Nb

Nb∑
i=1

− log
L(Θ̂∗(i)|y)

L(Θ̂|y)

)
(5.3)

where Θ̂ is the maximum-likelihood parameter set under the original data y,
Θ̂∗(i) is a maximum-likelihood parameter set estimated from the i-th boot-
strapped data set y∗(i), and Nb is the number of bootstrap data sets. It is
important to notice that the likelihood in the AICb equation is L(Θ̂∗|y) not
L(Θ̂∗|y∗). In other words, we are taking the average of the likelihood of the
original data given the bootstrapped parameter sets.

6

Examples

Here we show a series of short examples using the MARSS package functions.
Chapters 8–12 give case studies which walk through detailed multi-level anal-
yses. The examples in this chapter use the Washington harbor seal dataset
(?harborSealWA), which has five observation time series. First set up the data
to make time go across the columns and to remove the year column:

dat = t(harborSealWA)

dat = dat[2:nrow(dat),] #remove the year row

6.1 Fitting different MARSS models to a dataset

6.1.1 One hidden state process for each observation time series

This is the default model for the MARSS() function. In this case, n = m, the
observation errors are i.i.d. and the process errors are independent and have
different variances. The elements in u are all different (meaning, they are not
forced to be the same). Mathematically, the MARSS model being fit is:

x1,t

x2,t

x3,t

x4,t

x5,t

 =


x1,t−1

x2,t−1

x3,t−1

x4,t−1

x5,t−1

+


u1

u2

u3

u4

u5

+


w1,t

w2,t

w3,t

w4,t

w5,t

 , wt ∼ MVN

0,


q1 0 0 0 0
0 q2 0 0 0
0 0 q3 0 0
0 0 0 q4 0
0 0 0 0 q5





y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x1,t

x2,t

x3,t

x4,t

x5,t

+


0
0
0
0
0

+


v1,t
v2,t
v3,t
v4,t
v5,t

 , vt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




32 6 Examples

To fit this model, use MARSS(). The function will output the basic model
structure and the time to convergence. Notice that the output warns you
that the convergence tolerance is high. You can set it lower by passing in
control=list(conv.test.slope.tol=0.1).

kemfit = MARSS(dat)

Success! Parameters converged at 30 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Estimation converged in 30 iterations.
Log-likelihood: 19.11268
AIC: -6.225352 AICc: 3.848722

Estimate
Q.1 0.03024
Q.2 0.01072
Q.3 0.00690
Q.4 0.00426
Q.5 0.05267
R.1 0.00939
U.1 0.06840
U.2 0.07173
U.3 0.04169
U.4 0.05228
U.5 -0.00288
x0.1 5.98907
x0.2 6.72825
x0.3 6.66751
x0.4 5.83982
x0.5 6.60549

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

MARSS() is automatically creating parameter names (since you did not tell it
the names). To see exactly where each parameter element (e.g. Q.2) appears
in its parameter matrix, type summary(kemfit$model).

The default method is the Kalman-EM algorithm (method="kem"). You
can use a quasi-Newton method (BFGS) by setting method="BFGS".

kemfit.bfgs = MARSS(dat, method="BFGS")

Success! Converged in 100 interations.

6.1 Fitting different MARSS models to a dataset 33

MARSS fit is
Estimation method: BFGS
Estimation converged in 100 iterations.
Log-likelihood: 19.13936
AIC: -6.278712 AICc: 3.795362

Estimate
Q.1 0.03368
Q.2 0.01124
Q.3 0.00722
Q.4 0.00437
Q.5 0.05600
R.1 0.00849
U.1 0.06837
U.2 0.07152
U.3 0.04187
U.4 0.05233
U.5 -0.00270
x0.1 5.98432
x0.2 6.72169
x0.3 6.65689
x0.4 5.83529
x0.5 6.60423

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

Using the default EM convergence criteria, the EM algorithm stops at a log-
likelihood a little lower than the BFGS algorithm does, but the EM algorithm
was considerable faster, 24 times faster in this case. If you wanted to use the
Kalman-EM fit as the initial conditions, pass in the inits argument.

kemfit.bfgs2 = MARSS(dat, method="BFGS", inits=kemfit$par)

Output not shown.

6.1.2 Five correlated hidden state processes

This is the same model except that the hidden states have temporally corre-
lated process errors. Mathematically, this is the model:

34 6 Examples
x1,t

x2,t

x3,t

x4,t

x5,t

 =


x1,t−1

x2,t−1

x3,t−1

x4,t−1

x5,t−1

+


u1

u2

u3

u4

u5

+


w1,t

w2,t

w3,t

w4,t

w5,t

 , wt ∼ MVN

0,


q1 c1,2 c1,3 c1,4 c1,5
c1,2 q2 c2,3 c2,4 c2,5
c1,3 c2,3 q3 c3,4 c3,5
c1,4 c2,4 c3,4 q4 c4,5
c1,5 c2,5 c3,5 c4,5 q5





y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x1,t

x2,t

x3,t

x4,t

x5,t

+


0
0
0
0
0

+


v1,t
v2,t
v3,t
v4,t
v5,t

 , vt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




To fit, use MARSS() with the constraint argument set. The output is not shown
but it will appear if you type this on the R command line.

kemfit = MARSS(dat, constraint=list(Q="unconstrained"))

6.1.3 Five equally correlated hidden state processes

This is the same model except that now there is only one process error variance
and one process error covariance. Mathematically, the model is:

x1,t

x2,t

x3,t

x4,t

x5,t

 =


x1,t−1

x2,t−1

x3,t−1

x4,t−1

x5,t−1

+


u1

u2

u3

u4

u5

+


v1,t
v2,t
v3,t
v4,t
v5,t

 , et ∼ MVN

0,


q c c c c
c q c c c
c c q c c
c c c q c
c c c c q





y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x1,t

x2,t

x3,t

x4,t

x5,t

+


0
0
0
0
0

+


w1,t

w2,t

w3,t

w4,t

w5,t

 , wt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




To fit, use the following code (output not shown):

kemfit = MARSS(dat, constraint=list(Q="equalvarcov"))

6.1.4 Five hidden state processes with a “north” and a “south” u
parameter

Here we fit a model with five independent hidden states where each observa-
tion time series is an independent observation of a different hidden trajectory

6.1 Fitting different MARSS models to a dataset 35

but the hidden trajectories 1-3 share their u and q parameters, while hidden
trajectories 4-5 share theirs. This is the model:

x1,t

x2,t

x3,t

x4,t

x5,t

 =


x1,t−1

x2,t−1

x3,t−1

x4,t−1

x5,t−1

+


un
un
un
us
us

+


w1,t

w2,t

w3,t

w4,t

w5,t

 , wt ∼ MVN

0,


qn 0 0 0 0
0 qn 0 0 0
0 0 qn 0 0
0 0 0 qs 0
0 0 0 0 qs





y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x1,t

x2,t

x3,t

x4,t

x5,t

+


0
0
0
0
0

+


v1,t
v2,t
v3,t
v4,t
v5,t

 , vt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




To fit use the following code (output not shown):

regions=factor(c("N","N","N","S","S"))

kemfit = MARSS(dat, constraint=list(U=regions, Q=regions))

6.1.5 Fixed observation error variance

Here we fit the same model but with a known observation error variance. This
is the model:

x1,t

x2,t

x3,t

x4,t

x5,t

 =


x1,t−1

x2,t−1

x3,t−1

x4,t−1

x5,t−1

+


un
un
un
us
us

+


w1,t

w2,t

w3,t

w4,t

w5,t

 , wt ∼ MVN

0,


qn 0 0 0 0
0 qn 0 0 0
0 0 qn 0 0
0 0 0 qs 0
0 0 0 0 qs





y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x1,t

x2,t

x3,t

x4,t

x5,t

+


0
0
0
0
0

+


v1,t
v2,t
v3,t
v4,t
v5,t

 ,

vt ∼ MVN

0,


0.01 0 0 0 0

0 0.01 0 0 0
0 0 0.01 0 0
0 0 0 0.01 0
0 0 0 0 0.01




36 6 Examples

To fit this model, use the following code (output not shown):

regions=factor(c("N","N","N","S","S"))

kemfit = MARSS(dat, constraint=list(U=regions, Q=regions,

R=diag(0.01,5)))

6.1.6 One hidden state and five i.i.d. observation time series

Instead of five hidden state trajectories, we specify that there is only one and
all the observations are of that one trajectory. Mathematically, the model is:

xt = xt−1 + u+ vt, vt ∼ N(0, q)


y1,t
y2,t
y3,t
y4,t
y5,t

 =


1
1
1
1
1

xt +


0
a2

a3

a4

a5

+


w1,t

w2,t

w3,t

w4,t

w5,t

 , wt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




Note the default constraint for R is “diagonal and equal” so we can leave this
off when specifying the constraint argument. To fit, use this code (output
not shown):

kemfit =

MARSS(dat, constraint=list(Z=factor(c(1,1,1,1,1))))

Success! Parameters converged at 20 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Estimation converged in 20 iterations.
Log-likelihood: 3.575237
AIC: 8.849526 AICc: 11.17211

Estimate
A.2 0.80614
A.3 0.28714
A.4 -0.54169
A.5 -0.61899
Q.1 0.00458
R.1 0.04512
U.1 0.04763
x0.1 6.38185

6.1 Fitting different MARSS models to a dataset 37

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

6.1.7 One hidden state and five independent observation time
series with different variances

Mathematically, this model is:

xt = xt−1 + u+ vt, vt ∼ N(0, q)


y1,t
y2,t
y3,t
y4,t
y5,t

 =


1
1
1
1
1

xt +


0
a2

a3

a4

a5

+


w1,t

w2,t

w3,t

w4,t

w5,t

 , wt ∼ MVN

0,


r1 0 0 0 0
0 r2 0 0 0
0 0 r3 0 0
0 0 0 r4 0
0 0 0 0 r5




To fit this model:

kemfit =

MARSS(dat, constraint=list(Z=factor(c(1,1,1,1,1)),

R="diagonal and unequal"))

Success! Parameters converged at 21 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Estimation converged in 21 iterations.
Log-likelihood: 16.65824
AIC: -9.316477 AICc: -3.937167

Estimate
A.2 0.79435
A.3 0.27418
A.4 -0.53862
A.5 -0.61053
Q.1 0.00607
R.1 0.03217
R.2 0.03506
R.3 0.01361
R.4 0.01095
R.5 0.19662

38 6 Examples

U.1 0.05276
x0.1 6.26683

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

6.1.8 Two hidden state processes

Here we fit a model with two hidden states (north and south) where observa-
tion time series 1-3 are for the north and 4-5 are for the south. We make the
hidden state processes independent (meaning a diagonal Q matrix) but with
the same process variance. We make the observation errors i.i.d. (the default)
and the u elements equal. Mathematically, this is the model:[

xn,t
xs,t

]
=
[
xn,t−1

xs,t−1

]
+
[
u
u

]
+
[
wn,t
ws,t

]
, wt ∼ MVN

(
0,
[
q 0
0 q

])

y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0
1 0
1 0
0 1
0 1


[
xn,t
xs,t

]
+


0
a2

a3

0
a5

+


v1,t
v2,t
v3,t
v4,t
v5,t

 , vt ∼ MVN

0,


r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




To fit the model, use the following code (output not shown):

kemfit =

MARSS(dat, constraint=list(Z=factor(c("N","N","N","S","S")),

Q="diagonal and equal",U="equal"))

6.2 Printing and summarizing models and model fits

The package includes print functions for marssm objects (model objects) and
marssMLE objects (fitted models).

print(kemfit)

print(kemfit$model)

This will print the basic information on model structure and model fit that
you have seen in the previous examples.

The package also includes a summary function for models.

summary(kemfit$model)

Output is not shown because it is verbose, but it prints each matrix with the
fixed elements denoted with their values and the free elements denoted by
their names. This is very helpful for confirming exactly what model structure
you are fitting to the data.

6.3 Confidence intervals on a fitted model 39

6.3 Confidence intervals on a fitted model

The function MARSSparamCIs() is used to compute confidence intervals.
The function can compute approximate confidence intervals using a nu-
merically estimated Hessian matrix (method="hessian") or via parametric
(method="parametric") or non-parametric (method="innovations") boot-
strapping.

6.3.1 Approximate confidence intervals from a Hessian matrix

#default uses an est Hessian matrix

kem.with.hess.CIs = MARSSparamCIs(kemfit)

Use print or just type the marssMLE object name to see the confidence
intervals:

print(kem.with.hess.CIs)

MARSS fit is
Estimation method: kem
Estimation converged in 18 iterations.
Log-likelihood: 7.940938
AIC: 0.1181231 AICc: 2.440704

ML.Est Std.Err low.CI up.CI
A.2 0.79560 0.06146 0.675150 0.9160
A.3 0.27505 0.06247 0.152616 0.3975
A.5 -0.06879 0.08867 -0.242580 0.1050
Q.1 0.00794 0.00435 -0.000578 0.0165
R.1 0.03399 0.00645 0.021351 0.0466
U.1 0.04315 0.01460 0.014536 0.0718
x0.1 6.17126 0.14646 5.884193 6.4583
x0.2 6.20511 0.15805 5.895337 6.5149

CIs calculated at alpha = 0.05 via method=hessian

6.3.2 Confidence intervals from a parametric bootstrap

Use method="parametric" to use a parametric bootstrap to compute confi-
dence intervals and bias using a parametric bootstrap.

kem.w.boot.CIs=MARSSparamCIs(kemfit,method="parametric",nboot=10)

#nboot should be more like 1000, but set low for example's sake

print(kem.w.boot.CIs)

40 6 Examples

MARSS fit is
Estimation method: kem
Estimation converged in 18 iterations.
Log-likelihood: 7.940938
AIC: 0.1181231 AICc: 2.440704

ML.Est Std.Err low.CI up.CI Est.Bias Unbias.Est
A.2 0.79560 0.08255 0.6997 0.9157 -0.029975 0.7656
A.3 0.27505 0.06847 0.1982 0.3855 -0.016160 0.2589
A.5 -0.06879 0.08229 -0.1715 0.0796 0.000412 -0.0684
Q.1 0.00794 0.00439 0.0000 0.0122 0.002972 0.0109
R.1 0.03399 0.00783 0.0245 0.0482 0.000849 0.0348
U.1 0.04315 0.01553 0.0228 0.0627 -0.000647 0.0425
x0.1 6.17126 0.14406 5.9234 6.3213 0.039076 6.2103
x0.2 6.20511 0.18298 5.9840 6.5038 -0.057990 6.1471

CIs calculated at alpha = 0.05 via method=parametric
Bias calculated via parametric bootstrapping with 10 bootstraps.

6.4 Vectors of just the estimated parameters

Often it is useful to have a vector of the estimated parameters. For example,
if you are writing a call to optim, you will need a vector of just the estimated
parameters.

parvec=MARSSvectorizeparam(kemfit)

parvec

A.2 A.3 A.5 Q.1 R.1
0.79559952 0.27504984 -0.06878883 0.00794155 0.03398797

U.1 x0.1 x0.2
0.04315203 6.17125597 6.20511352

If you want to replace the estimated parameter values with different values,
you can use the same function:

parvec.new=parvec

parvec.new["Q.1"]=0.02; parvec.new["U.1"]=0.05

kem.new=MARSSvectorizeparam(kemfit, parvec.new)

Then you might want to find out the likelihood of the data using those new pa-
rameter values. You compute that with the Kalman filter function MARSSkf(),
sending it the data and the parameters as a list.

kf=MARSSkf(dat, kem.new$par, miss.value=-99)

kf$logLik

[1] 5.943587

6.5 Degenerate variance estimates 41

6.5 Degenerate variance estimates

If your data are short relative to the number of parameters you are estimating,
then you are liable to find that some of the variance elements are degenerate
(equal to zero). Try the following:

dat.short = dat[1:4,1:10]

kem.degen = MARSS(dat.short,control=list(allow.degen=FALSE))

Warning! Reached maxit before parameters converged. Maxit was 500.

MARSS fit is
Estimation method: kem
WARNING: maxit reached, 500 iter, before convergence.
The likelihood and params are not at the ML values.
Try setting control$maxit higher.
Log-likelihood: 11.67847
AIC: 2.643054 AICc: 63.30972

Estimate
Q.1 1.89e-02
Q.2 1.03e-05
Q.3 8.24e-06
Q.4 3.05e-05
R.1 1.22e-02
U.1 9.79e-02
U.2 1.09e-01
U.3 9.28e-02
U.4 1.11e-01
x0.1 5.96e+00
x0.2 6.73e+00
x0.3 6.60e+00
x0.4 5.71e+00

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

Convergence warnings
Warning: the Q.2 parameter value has not converged.
Warning: the Q.3 parameter value has not converged.
Warning: the Q.4 parameter value has not converged.

This will print a warning that the maximum number of iterations was reached
before convergence of some of the Q parameters. It might be that if you just
ran a few more iterations the variances will converge. So first try setting
control$maxit higher.

42 6 Examples

kem.200 = MARSS(dat.short, control=list(maxit=1000,

allow.degen=FALSE), silent=2)

Warning! Reached maxit before parameters converged. Maxit was 1000.

Some of the Q terms are still not converging. MARSS can detect if a variance
is going to zero and it will try zero to see if that has a higher likelihood. Try
removing the allow.degen=FALSE which was turning off this feature.

kem.200 = MARSS(dat.short)

Success! Parameters converged at 182 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Estimation converged in 182 iterations.
Log-likelihood: 11.71475
AIC: 2.570491 AICc: 63.23716

Estimate
Q.1 0.0189
Q.2 0.0000
Q.3 0.0000
Q.4 0.0000
R.1 0.0123
U.1 0.0979
U.2 0.1088
U.3 0.0924
U.4 0.1108
x0.1 5.9645
x0.2 6.7285
x0.3 6.6011
x0.4 5.7093

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

So three of the four Q elements are going to zero. This often happens when you
do not have enough data to estimate both observation and process variance.

Perhaps we are trying to estimate too many variances. We can try using
only one variance value in Q and one u value in u:

kem.small=MARSS(dat.short,constraint=list(Q="diagonal and equal",

U="equal"))

6.7 Data simulation 43

Success! Parameters converged at 155 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Estimation converged in 155 iterations.
Log-likelihood: 11.18711
AIC: -8.374226 AICc: 0.959107

Estimate
Q.1 0.0000
R.1 0.0194
U.1 0.1030
x0.1 6.0579
x0.2 6.7664
x0.3 6.5293
x0.4 5.7430

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

No, we still get the convergence warning. There are simply not enough data
to estimate both process and observation variances.

6.6 Bootstrap parameter estimates

You can easily produce bootstrap parameter estimates from a fitted model
using MARSSboot():

boot.params = MARSSboot(kemfit,

nboot=20, output="parameters", sim="parametric")$boot.params

|2% |20% |40% |60% |80% |100%
Progress: ||

Use silent=TRUE to stop the progress bar from printing. The function will also
produce parameter sets generated using a Hessian matrix (sim="hessian")
or a non-parametric bootstrap (sim="innovations").

6.7 Data simulation

6.7.1 Simulated data from a fitted MARSS model

You can easily simulate data from a fitted model using MARSSsimulate().

44 6 Examples

sim.data=MARSSsimulate(kemfit$par, nsim=2, tSteps=100)$sim.data

Then you might want to estimate parameters from that simulated data. Above
we created two simulated datasets (nsim=2). We will fit to the first one. Here
the default settings for MARSS() are used.

kem.sim.1 = MARSS(sim.data[,,1])

Then we might like to see the likelihood of the second set of simulated data
under the model fit to the first set of data. We do that with the Kalman filter
function.

MARSSkf(sim.data[,,2], kem.sim.1$par, miss.value = -99)$logLik

[1] 14.56849

There are no missing values in our simulated data, but we still need to pass
miss.value into MARSSkf().

6.7.2 Simulated data from a user-built MARSS model

This shows you how to build up a model from scratch and simulate from that
using MARSSsimulate().

nsim = 20 # number of simulations

burn = 10 # length of burn in period

tSteps = 25

m=3 #number of hidden state trajectories

B = diag(1,m);

A = array(0, dim=c(m,1))

Z = diag(1,m)

U = array(0.01, dim=c(m,1))

Q = diag(0.3, m) #independent process errors

R = diag(0.01, m) #independent obs errors

x0 = array(10, dim=c(m,1)) #initial conditions, really x_1

V0 = array(0,dim=c(m,m)) #leave this 0

the.par.list =

list(Z=Z, A=A, R=R, B=B, U=U, Q=Q, x0=x0, V0=V0)

simulate data

sim = MARSSsimulate(the.par.list,nsim=nsim,tSteps=burn+tSteps)

take off the burn

obs = sim$sim.data[,(burn+1):(burn+tSteps),] #m x T x nsim

6.7.3 Correlation between estimated parameters

We can use a for loop along with MARSSvectorizeparam() to estimate pa-
rameters for each of the nsim simulated datasets in obs, and then assemble
the estimates into a matrix.

6.7 Data simulation 45

for(i in 1:nsim){

dat=obs[,,i]

kem.sim=MARSS(dat, silent=TRUE)

if(i==1) par.sim=MARSSvectorizeparam(kem.sim)

else par.sim=rbind(par.sim, MARSSvectorizeparam(kem.sim))

}

Then we use pairs() to get a quick visual look at how the parameters are
correlated (or not) and how variable they are (Figure 6.1).

Q.1

0.05

●
●●

●
●
●●●

●
●

● ●
●

●

● ●●
●

● ●
●

●●
●

●
●●●

●
●

●●
●

●

●● ●
●

●●

0.00 0.12

●
●●

●
●

●● ●

●
●

●●
●

●

●●●
●

●●
●

●●
●
●

●● ●

●
●

●●
●

●

● ●●
●

● ●

−0.1

●
●●

●
●

●●●

●
●

● ●
●

●

● ●●
●
●●

●
● ●

●
●
●●●

●
●

● ●
●

●

●●● ●
●●

6 12

●
●●

●
●

●●●

●
●

●●
●

●

●●●
●

● ●
●

● ●
●

●
● ● ●

●
●

●●
●

●

●●●
●

● ●

8 14

0.
1

0.
5

●
●●
●

●
●●●

●
●

●●
●

●

● ●●
●

●●

0.
05

●●

●
● ●●●

● ●

●

●

●

●

●●

●
●

●
●

● Q.2
●●

●
● ●●●

●●

●

●

●

●

●●

●
●

●
●

●
● ●

●
●● ●●

●●

●

●

●

●

●●

●
●

●
●

●
● ●

●
●●●●

●●

●

●

●

●

●●

●
●

●
●

●
●●

●
● ●●●
●●

●

●

●

●

● ●

●
●

●
●

●
●●

●
●●●●

● ●

●

●

●

●

●●

●
●

●
●

●
●●

●
●● ●●

●●

●

●

●

●

●●

●
●

●
●

●
● ●

●
●●● ●

●●

●

●

●

●

● ●

●
●

●
●

●
●●

●
●●●●

● ●

●

●

●

●

●●

●
●

●
●

●

●
●
●

●
●●

●● ●

●

●●

● ●
●

●

●
●

●

●
●

●
●

●
●●

●●●

●

● ●

●●
●

●

●
●

●

●
Q.3 ●

●
●

●
● ●

● ●●

●

●●

●●
●

●

●
●

●

●
●

●
●

●
●●

● ●●

●

●●

●●
●

●

●
●

●

●
●
●

●
●

●●

●●●

●

● ●

●●
●

●

●
●

●

●
●
●

●
●

●●

●● ●

●

● ●

●●
●

●

●
●

●

●
●

●
●

●
● ●

●●●

●

●●

●●
●

●

●
●

●

●
●

●
●

●
●●

● ●●

●

●●

●●
●

●

●
●

●

●

0.
1●

●
●

●
●●

●● ●

●

●●

●●
●

●

●
●

●

●

0.
00

0.
12

●

●●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●●
●
●
●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
● R.1 ●

●●
●
●

●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

● ●
●

●
●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

● ●
●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●
●

● ●
●●

● ●

●

●●
● ●

●

●

●●

●
●

●

●
●

●●
●●

●●

●

● ●
●●

●

●

●●

●
●

●

●
●

● ●
●●

●●

●

●●
●●
●

●

●●

●
●

●

●
●

●●
●●

●●

●

●●
●●

●

●

● ●

●
●

U.1 ●

●
●

● ●
●●

●●

●

● ●
●●

●

●

● ●

●
●

●

●
●

●●
●●

● ●

●

● ●
●●

●

●

● ●

●
●

●

●
●

●●
●●

●●

●

●●
●●

●

●

●●

●
●

●

●
●

●●
● ●

●●

●

●●
●●

●

●

●●

●
●

−
0.

10●

●
●

●●
●●

● ●

●

●●
●●

●

●

●●

●
●

−
0.

1

●●●
●

●

●●
●

●

●

●

●
●

●
●

●

●

●●● ●●●
●

●

●●
●
●

●

●

●
●

●
●

●

●

●● ● ●●●
●

●

●●
●
●

●

●

●
●

●
●

●

●

● ●● ● ●●
●

●

●●
●

●

●

●

●
●

●
●

●

●

●●● ● ●●
●

●

●●
●

●

●

●

●
●

●
●

●

●

● ● ● U.2 ●● ●
●

●

●●
●

●

●

●

●
●

●
●

●

●

●●● ●●●
●

●

●●
●

●

●

●

●
●

●
●

●

●

● ● ● ● ● ●
●

●

● ●
●

●

●

●

●
●

●
●

●

●

●● ● ●●●
●

●

●●
●

●

●

●

●
●

●
●

●

●

● ●●

●●
●●
●●●
●

●
●

●

●
● ●

●
●●

●

●●

●●
●●

●●●
●
●

●
●

●
●●

●
●●

●

● ●

●●
● ●

●●●
●
●

●
●

●
●●

●
● ●

●

●●

● ●
●●

● ●●
●

●
●

●

●
●●

●
●●

●

●●

● ●
●●

●●●
●

●
●

●

●
●●

●
●●

●

● ●

●●
●●

●●●
●

●
●

●

●
●●

●
●●

●

●● U.3
●●

● ●
● ●●

●
●

●
●

●
●●

●
●●

●

● ●

● ●
● ●

●● ●
●

●
●

●

●
●●

●
●●

●

● ●

−
0.

1

●●
● ●
●●●

●
●

●
●

●
●●

●
●●

●

●●

6
12

●
●
●

●

●

●

●● ●

●

●
●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●
●●
●

●

●

●

●
●
●

●

●

●

● ●●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●
●

●

●
●●

●

●

●

●

x0.1 ●
●

●

●

●

●

● ●●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●
●

●

●
● ●
●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

● ●
●●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

● ●
●●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●●

●

●
● ●
●

●

●

●

●

●●
● ●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●
●●

●

●

x0.2

8
11

●

●

●

●●

●

●
● ●

●

●

●

●

●

● ●
●●

●

●

0.1 0.5

8
14

●●

●

●

●
●

●
●

●

●
●●

●

●●

●

●

●

●● ●●

●

●

●
●

●
●

●

●
● ●

●

●●

●

●

●

● ●

0.1

●●

●

●

●
●

●
●

●

●
●●

●

●●

●

●

●

●● ● ●

●

●

●
●

●
●

●

●
●●

●

●●

●

●

●

●●

−0.10

● ●

●

●

●
●

●
●

●

●
●●

●

●●

●

●

●

● ● ●●

●

●

●
●

●
●

●

●
● ●

●

● ●

●

●

●

●●

−0.1

●●

●

●

●
●

●
●

●

●
● ●

●

●●

●

●

●

●● ●●

●

●

●
●

●
●

●

●
●●

●

●●

●

●

●

● ●

8 11

● ●

●

●

●
●

●
●

●

●
●●

●

● ●

●

●

●

● ● x0.3

Fig. 6.1. The parameter pairs plotted against each other using the command
pairs(par.sim).

We could also use MARSSboot() to do this. However, MARSSboot() is de-
signed to take a marssMLE object (such as would be returned from MARSS()).

46 6 Examples

6.8 Bootstrap AIC

The function MARSSaic() computes a bootstrap AIC for model selection pur-
poses. Use output="AICbp" to produce a parameter bootstrap. Use output="AICbb"
to produce a non-parameter bootstrap AIC.

kemfit.with.AICb = MARSSaic(kemfit, output = "AICbp",

Options = list(nboot = 10, silent=TRUE))

#nboot should be more like 1000, but set low here for example sake

print(kemfit.with.AICb)

MARSS fit is
Estimation method: kem
Estimation converged in 18 iterations.
Log-likelihood: 7.940938
AIC: 0.1181231 AICc: 2.440704 AICbp(param): 6.94647

Estimate
A.2 0.79560
A.3 0.27505
A.5 -0.06879
Q.1 0.00794
R.1 0.03399
U.1 0.04315
x0.1 6.17126
x0.2 6.20511

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

7

Case study instructions

The case studies walk you through some analyses of multivariate population
count data using MARSS models and the MARSS() function. This will take
you through both the conceptual steps (with pencil and paper) and a R step
which translates the conceptual model into code.

Set-up

� If you haven’t already, install the MARSS package. See directions on the
CRAN webpage (http://cran.r-project.org/) for instructions on installing
packages. You will need write permissions for your R program directories
to install packages. See the help pages on CRAN for workarounds if you
don’t have write permission.

� Type in library(MARSS) at the R command line. Now you should be
ready.

� Each case study comes with an associated script file. To open up a copy
of the case study script with the code you need to do the exercises, type
show.doc(MARSS, Case_study_#.R) (with # replaced by the case study
number).

Tips

� summary(foo$model), where foo is a fitted model object, will print de-
tailed information on the structure of the MARSS model that was fit in the
call foo = MARSS(logdata). This allows you to double check the model
you fit. print(foo) will print a ‘English’ version of the model structure
along with the parameter estimates.

� When you run MARSS(), it will output the number of iterations used. If you
reached the maximum, re-run with control=list(maxit=...) set higher
than the default.

48 7 Case study instructions

� If you mis-specify the model, MARSS() will post an error that should give
you an idea of the problem (make sure silent=FALSE to see full error re-
ports). Remember, the number of rows in your data is n, time is across the
columns, and the length of the vector or factors passed in for constraint$Z
must be m, the number of x hidden state trajectories in your model.

� If you are fitting to population counts, your data must be logged (base e)
before being passed in. The default missing value indicator is -99. You can
change that by passing in miss.value=....

� Running MARSS(data), with no arguments except your data, will fit a
MARSS model with m = n, a diagonal Q matrix with m variances, and
i.i.d. observation errors.

8

Case Study 1: Count-based Population
Viability Analysis using corrupted data

8.1 The Problem

Estimates of extinction and quasi-extinction risk are an important risk met-
ric used in the management and conservation of endangered and threatened
species. By necessity, these estimates are based on data that contain both vari-
ability due to real year-to-year changes in the population growth rate (process
errors) and variability in the relationship between the true population size and
the actual count (observation errors). Classic approaches to extinction risk
assume the data have only process error, i.e. no observation error. In reality,
observation error is ubiquitous both because of the sampling variability and
also because of year-to-year (and day-to-day) variability in sightability.

In this case study, we use the Kalman filter to fit a univariate (meaning
one time series) state-space model to count data for a population. We will
compute the extinction risk metrics given in Dennis et al. (1991), however
instead of using a process-error only model (as is done in the original paper),
we use a model with both process and observation error. The risk metrics
and their interpretations are the same as in Dennis et al. (1991). The only
real difference is how we compute σ2, the process error variance. However this
difference has a large effect on our risk estimates, as you will see.

In this case study, we use a density-independent model, which is the same
as the Gompertz model (Equation 3.1) with B = 1. Density-independence
is often a reasonable assumption when doing a population viability analy-
sis because we do such calculations for at-risk populations that are either
declining or that are well below historical levels (and presumably carrying
capacity). In an actual population viability analysis, it is necessary to justify
this assumption and if there is reason to doubt the assumption, one tests for
density-dependence (Taper and Dennis, 1994) and does sensitivity analyses
using state-space models with density-dependence (Dennis et al., 2006).

The univariate model is written:

50 8 Count-based PVA

xt = xt−1 + u+ wt where wt ∼ N(0, σ2) (8.1)
yt = xt + vt where vt ∼ N(0, η2) (8.2)

where yt is the logarithm of the observed population size at time t, xt is the
unobserved state at time t, u is the growth rate, and σ2 and η2 are the process
and observation error variances, respectively. In the R code to follow, σ2 is
denoted Q and η2 is denoted R because the functions we are using are also
for multivariate state-space models and those models use Q and R for the
respective variance-covariance matrices.

8.2 Simulated data with process and observation error

We will start by using simulated data to see the difference between data
and estimates from a model with process error only versus a model that also
includes observation error. For our simulated data, we used a decline of 5% per
year, process variability of 0.01 (typical for big mammals), and a observation
variability of 0.05 (which is a bit on the high end). We’ll randomly set 10% of
the values as missing. Here is the code:

First, set things up:

sim.u = -0.05 # growth rate

sim.Q = 0.01 # process error variance

sim.R = 0.05 # non-process error variance

nYr= 30 # number of years of data to generate

fracmissing = 0.1 # fraction of years that are missing

init = 7 # log of initial pop abundance

years = seq(1:nYr) # sequence 1 to nYr

x = rep(NA,nYr) # replicate NA nYr times

y = rep(NA,nYr)

Then generate the population sizes using Equation 8.1:

x[1]=init

for(t in 2:nYr){

x[t] = x[t-1]+ sim.u + rnorm(1,mean=0,sd=sqrt(sim.Q)) }

Lastly, add observation error using Equation 8.2 and then add missing
values:

for(t in 1:nYr){

y[t]= x[t] + rnorm(1,mean=0,sd=sqrt(sim.R))

}

missYears = sample(years[2:(nYr-1)],floor(fracmissing*nYr),

replace = FALSE)

y[missYears]=-99

8.2 Simulated data with process and observation error 51

●

●

●
●

●

●
●●

● ●●

●

●

●●

●

●
●
●

●
●

●

●

●

●●

●

0 5 10 20 30

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 1

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

● ●

●●

●
●

●
●
●

●
●

●

0 5 10 20 30

5.
8

6.
4

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 2

●

●

●

● ●
●●

●●
●
●
●

●

●●
● ●

●

●●

●

●
●
●●●

●

0 5 10 20 30

5.
0

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 3

●

●

●●
●
●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●●

●●

●

0 5 10 20 30

5.
5

6.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 4

● ●
●

●
●
●
●
●●

●●
●

● ●

●
●

●

●
●

●●
●●●●

●

●

0 5 10 20 30

5.
0

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 5

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●
●
●
●

●

●

0 5 10 20 30

6.
2

6.
8

7.
4

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 6

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●●

●

●

●

●
●

●
● ●

0 5 10 20 30

5.
5

6.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 7

●
●

●

●●
●
●

●

●

●

● ●

●

●●

●

●

●
●

●
●

●

●●
●

●

●

0 5 10 20 30

5.
5

6.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 8

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

0 5 10 20 30

5.
8

6.
4

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 9

Fig. 8.1. Plot of nine simulated population time series with process and observation
error. Circles are observation and the dashed line is the true population size.

Stochastic population trajectories show much variation, so it is best to
look at a few simulated data sets at once. In Figure 8.1, nine simulations from
the identical parameters are shown.

Example 8.1 (The effect of parameter values on parameter esti-
mates)

A good way to get a feel for reasonable σ2 values is to generate simulated
data and look at the time series. As a biologist, you probably have a pretty
good idea of what kind of year-to-year population changes are reasonable for
your species. For example for many large mammalian species, the maximum
population yearly increase would be around 50% (the population could go from
1000 to 1500 in one year), but some of fish species could easily double or
even triple in a really good year. Your observed data may bounce around a lot
for many different reasons having to do with sightability, sampling error, age-
structure, etc., but the underlying population trajectory is constrained by the

52 8 Count-based PVA

kinds of year-to-year changes in population size that are biologically possible
for your species. σ2 describes those true population changes.

Run the exercise code several times using different parameter values to get a
feel for how different the time series can look based on identical parameter
values. You can cut and paste from the pdf into the R command line. Typical
vertebrate σ2 values are 0.002 to 0.02, and typical η2 values are 0.005 to 0.1.
A u of -0.01 translates to an average 1% per year decline and a u of -0.1
translates to an average 10% per year decline (approximately).

Example 8.1 code
Type show.doc(MARSS, Case_study_1.R) to open a file with all the example code.

par(mfrow=c(3,3))

sim.u = -0.05

sim.Q = 0.01

sim.R = 0.05

nYr= 30

fracmiss = 0.1

init = 7

years = seq(1:nYr)

for(i in 1:9){

x = rep(NA,nYr) # vector for ts w/o measurement error

y = rep(NA,nYr) # vector for ts w/ measurement error

x[1]=init

for(t in 2:nYr){

x[t] = x[t-1]+ sim.u + rnorm(1, mean=0, sd=sqrt(sim.Q)) }

for(t in 1:nYr){

y[t]= x[t] + rnorm(1,mean=0,sd=sqrt(sim.R)) }

missYears =

sample(years[2:(nYr-1)],floor(fracmiss*nYr),replace = FALSE)

y[missYears]=-99

plot(years[y!=-99], y[y!=-99],

xlab="",ylab="log abundance",lwd=2,bty="l")

lines(years,x,type="l",lwd=2,lty=2)

title(paste("simulation ",i))

}

legend("topright", c("Observed","True"),

lty = c(-1, 2), pch = c(1, -1))

8.3 Maximum-likelihood parameter estimation 53

8.3 Maximum-likelihood parameter estimation

8.3.1 Model with process and observation error

We put the simulated data through the Kalman-EM algorithm in order to
estimate the parameters, u, σ2, and η2, and population sizes. These are the
estimates using a model with process and observation variability. The function
call is kem = MARSS(data), where data is a vector of logged (base e) counts
with missing values denoted by -99. After this call, the maximum-likelihood
parameter estimates are kemparU, kemparQ and kemparR. There are
numerous other outputs from the MARSS() function. To get a list of the outputs
type in names(kem). Note that kem is just a name; the output could have been
called foo. Here’s code to fit to the simulated time series:

kem = MARSS(y)

Let’s look at the parameter estimates for the nine simulated time series
in Figure 8.1 to get a feel for the variation. The MARSS() function was used
on each time series to produce parameter estimate for each simulation. The
estimates are followed by the mean (over the nine simulations) and the true
values:

kem.U kem.Q kem.R
sim 1 -0.03494735 0.000000000 0.04984165
sim 2 -0.03539361 0.000000000 0.05702256
sim 3 -0.06167768 0.019339366 0.04149535
sim 4 -0.04325879 0.000000000 0.04575033
sim 5 -0.07187786 0.022111208 0.01807441
sim 6 -0.01871904 0.000000000 0.06201101
sim 7 -0.04714729 0.000000000 0.05943489
sim 8 -0.05436225 0.000000000 0.07322492
sim 9 -0.02775879 0.000000000 0.05468758
mean sim -0.04390474 0.004605619 0.05128252
true -0.05000000 0.010000000 0.05000000

As expected, the estimated parameters do not exactly match the true param-
eters, but the average should be fairly close (although nine simulations is a
small sample size). Also note that although we do not get u quite right, our
estimates are usually negative. Thus our estimates usually indicate declining
dynamics.

The Kalman-EM algorithm also gives an estimate of the true population
size with observation error removed. This is in kem$states. Figure 8.2 shows
the estimated true states of the population over time as a solid line. Note that
the solid line is considerably closer to the actual true states (dashed line) than
the observations. On the other hand with certain datasets, the estimates can
be quite wrong as well!

54 8 Count-based PVA

●

●

●
●

●

●
●●

● ●●

●

●

●●

●

●
●
●

●
●

●

●

●

●●

●

0 5 10 20 30

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 1

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

● ●

●●

●
●

●
●
●

●
●

●

0 5 10 20 30

5.
8

6.
4

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 2

●

●

●

● ●
●●

●●
●
●
●

●

●●
● ●

●

●●

●

●
●
●●●

●

0 5 10 20 30

5.
0

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 3

●

●

●●
●
●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●●

●●

●

0 5 10 20 30

5.
5

6.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 4

● ●
●

●
●
●
●
●●

●●
●

● ●

●
●

●

●
●

●●
●●●●

●

●

0 5 10 20 30

5.
0

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 5

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●
●
●
●

●

●

0 5 10 20 30

6.
2

6.
8

7.
4

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 6

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●●

●

●

●

●
●

●
● ●

0 5 10 20 30

5.
5

6.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 7

●
●

●

●●
●
●

●

●

●

● ●

●

●●

●

●

●
●

●
●

●

●●
●

●

●

0 5 10 20 30

5.
5

6.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 8

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

0 5 10 20 30

5.
8

6.
4

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 9

Fig. 8.2. The circles are the observed population sizes with error. The dashed lines
are the true population sizes. The solid thin lines are the estimates of the true
population size from the Kalman-EM algorithm.

8.3.2 Model with no observation error

We used the Kalman-EM algorithm to estimate the mean population rate u
and process variability σ2 under the assumption that the count data have
observation error. However, the classic approach to this problem, referred to
as the “Dennis model” (Dennis et al., 1991), uses a model that assumes the
data have no observation error; all the variability in the data is assumed to
result from process error. This approach works well if the observation error in
the data is low, but not so well if the observation error is high. We will next
fit the data using the classic approach so that we can compare and contrast
parameter estimates from the different methods.

Using the estimation method in Dennis et al. (1991), our data need to be
re-specified as the observed population changes (delta.pop) between censuses
along with the time between censuses (tau). We re-specify the data as follows:

den.years = years[y!=-99] # the non missing years

den.y = y[y!=-99] # the non missing counts

den.n.y = length(den.years)

8.3 Maximum-likelihood parameter estimation 55

delta.pop = rep(NA, den.n.y-1) # population transitions

tau = rep(NA, den.n.y-1) # step sizes

for (i in 2:den.n.y){

delta.pop[i-1] = den.y[i] - den.y[i-1]

tau[i-1] = den.years[i] - den.years[i-1]

} # end i loop

Next, we regress the changes in population size between censuses (delta.pop)
on the time between censuses (tau) while setting the regression intercept to 0.
The slope of the resulting regression line is an estimate of u, while the variance
of the residuals around the line is an estimate of σ2. The regression is shown
in Figure 8.3. Here is the code to do that regression:

den91 <- lm(delta.pop ~ -1 + tau)

note: the "-1" specifies no intercept

den91.u = den91$coefficients

den91.Q = var(resid(den91))

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0.

6
−

0.
2

0.
2

0.
6

time step size (tau)

po
pu

la
tio

n
tr

an
si

tio
n

si
ze

Fig. 8.3. The regression of log(Nt+τ)− log(Nt) against τ . The slope is the estimate
of u and the variance of the residuals is the estimate of σ2.

56 8 Count-based PVA

Here are the parameter values for the data in Figure 8.2 using the process-
error only model:

den91.U den91.Q
sim 1 -0.029996777 0.10075189
sim 2 -0.037233652 0.11118126
sim 3 -0.050171644 0.10713363
sim 4 -0.047877065 0.08761822
sim 5 -0.056771766 0.05968257
sim 6 -0.025068284 0.13324756
sim 7 -0.052921562 0.10977084
sim 8 -0.039419954 0.17085967
sim 9 -0.007105354 0.12140355
mean sim -0.038507340 0.11129436
true -0.050000000 0.01000000

Notice that the u estimates are similar to those from the Kalman-EM algo-
rithm, but the σ2 estimate (Q) is much larger. That is because this approach
treats all the variance as process variance, so any observation variance in
the data is lumped into process variance (in fact it appears as an additional
variance of twice the observation variance).

Example 8.2 (The variability in parameter estimates)

In this example, you will look at how variable the parameter estimates are by
generating multiple simulated data sets and then estimating parameter values
for each. You’ll compare the Kalman-EM estimates to the estimates using a
process error only model (i.e. ignoring the observation error).

8.3 Maximum-likelihood parameter estimation 57

Example 8.2 code
Type show.doc(MARSS, Case_study_1.R) to open a file with all the example code.

You will not be able to edit this file. To edit, copy and paste into a new script file.

sim.u = -0.05 # growth rate

sim.Q = 0.01 # process error variance

sim.R = 0.05 # non-process error variance

nYr= 30 # number of years of data to generate

fracmiss = 0.0 # fraction of years that are missing

init = 7 # log of initial pop abundance (~1100 individuals)

nsim = 9

years = seq(1:nYr) # col of years

params = matrix(NA, nrow=(nsim+2), ncol=5,

dimnames=list(c(paste("sim",1:nsim),"mean sim","true"),

c("kem.U","den91.U","kem.Q","kem.R", "den91.Q")))

x.ts = matrix(NA,nrow=nsim,ncol=nYr) # ts w/o measurement error

y.ts = matrix(NA,nrow=nsim,ncol=nYr) # ts w/ measurement error

for(i in 1:nsim){

x.ts[i,1]=init

for(t in 2:nYr){

x.ts[i,t] = x.ts[i,t-1]+sim.u+rnorm(1,mean=0,sd=sqrt(sim.Q))}

for(t in 1:nYr){

y.ts[i,t] = x.ts[i,t]+rnorm(1,mean=0,sd=sqrt(sim.R))}

missYears = sample(years[2:(nYr-1)], floor(fracmiss*nYr),

replace = FALSE)

y.ts[i,missYears]=-99

#Kalman-EM estimates

#So that this code runs fast, we're using a rough convergence test (abstol)

#change that line to kem = MARSS(y.ts[i,], silent=TRUE)

#for a better (albeit slower) convergence test

kem = MARSS(y.ts[i,], control=list(abstol=0.01), silent=TRUE)

params[i,c(1,3,4)] = c(kemparU,kemparQ,kemparR)

#Dennis et al 1991 estimates

den.years = years[y.ts[i,]!=-99] # the non missing years

den.yts = y.ts[i,y.ts[i,]!=-99] # the non missing counts

den.n.yts = length(den.years)

delta.pop = rep(NA, den.n.yts-1) # transitions

tau = rep(NA, den.n.yts-1) # time step lengths

for (t in 2:den.n.yts){

delta.pop[t-1] = den.yts[t] - den.yts[t-1] # transitions

tau[t-1] = den.years[t]-den.years[t-1] # time step length

} # end i loop

den91 <- lm(delta.pop ~ -1 + tau) # -1 specifies no intercept

params[i,c(2,5)] = c(den91$coefficients, var(resid(den91)))

}

params[nsim+1,]=apply(params[1:nsim,],2,mean)

params[nsim+2,]=c(sim.u,sim.u,sim.Q,sim.R,sim.Q)

58 8 Count-based PVA

Here is an example of the output from the code:

print(params,digits=3)

kem.U den91.U kem.Q kem.R den91.Q

sim 1 -0.0427 -0.0493 0.000253 0.0454 0.1054

sim 2 -0.0784 -0.0731 0.000159 0.0417 0.1134

sim 3 -0.0442 -0.0536 0.006801 0.0578 0.1394

sim 4 -0.0607 -0.0516 0.004877 0.0919 0.1781

sim 5 -0.0666 -0.0658 0.000313 0.0391 0.0664

sim 6 -0.0587 -0.0451 0.009608 0.0338 0.0766

sim 7 -0.0216 -0.0325 0.000345 0.0497 0.1075

sim 8 -0.0589 -0.0531 0.001452 0.0647 0.1502

sim 9 -0.0558 -0.0604 0.012751 0.0496 0.1269

mean sim -0.0542 -0.0538 0.004062 0.0526 0.1182

true -0.0500 -0.0500 0.010000 0.0500 0.0100

1. Re-run the code a few times to see the performance of the estimates us-
ing a state-space model (kem) versus the model with no observation error
(den91). You can copy and paste the code from the pdf file into R .

2. Alter the observation variance, sim.R, in the data generation step in order
to get a feel for performance as observations are further corrupted. What
happens as observation error is increased?

3. Decrease the number of years of data, nYr, and re-run the parameter es-
timation. What changes?

If you find that the exercise code takes too long to run, reduce the number of
simulations (by reducing nsim in the code).

8.4 Probability of hitting a threshold Π(xd, te)

A common extinction risk metric is ‘the probability that a population will hit
a certain threshold xd within a certain time frame te – if the observed trends
continue’. In practice, the threshold used is not Ne = 1, which would be true
extinction. Often a ‘functional’ extinction threshold will be used (Ne >> 1).
Other times a threshold representing some fraction of current levels is used.
The latter is used because we often have imprecise information about the
relationship between the true population size and what we measure in the
field; that is, many population counts are index counts. In these cases, one

8.4 Probability of hitting a threshold Π(xd, te) 59

must use ‘fractional declines’ as the threshold. Also, extinction estimates that
use an absolute threshold (like 100 individuals) are quite sensitive to error
in the estimate of true population size. Here, we are going to use fractional
declines as the threshold, specifically pd = 0.1 which means a 90% decline.

The probability of hitting a threshold, denoted Π(xd, te), is typically pre-
sented as a curve showing the probabilities of hitting the threshold (y-axis)
over different time horizons (te) on the x-axis. Extinction probabilities can
be computed through Monte Carlo simulations or analytically using Equation
16 in Dennis et al. (1991) (note there is a typo in Equation 16; the last + is
supposed to be a −). We will use the latter method:

Π(xd, te) = π(u)×Φ
(
−xd + |u|te√

σ2te

)
+exp(2xd|u|/σ2)Φ

(
−xd − |u|te√

σ2te

)
(8.3)

where xe is the threshold and is defined as xe = log(N0/Ne). N0 is the current
population estimate and Ne is the threshold. If we are using fractional declines
then xe = log(N0/(pd × N0)) = − log(pd). π(u) is the probability that the
threshold is eventually hit (by te = ∞). π(u) = 1 if u <= 0 and π(u) =
exp(−2uxd/σ2) if u > 0. Φ() is the cumulative probability distribution of the
standard normal (mean = 0, sd = 1).

Here is the R code for that computation:

pd = 0.1 #means a 90 percent decline

tyrs = 1:100

xd = -log(pd)

p.ever = ifelse(u<=0,1,exp(-2*u*xd/Q)) #Q=sigma2

for (i in 1:100){

Pi[i] = p.ever * pnorm((-xd+abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))+

exp(2*xd*abs(u)/Q)*pnorm((-xd-abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))

}

Figure 8.4 shows the estimated probabilities of hitting the 90% decline
for the nine 30-year times series simulated with u = −0.05, σ2 = 0.01 and
η2 = 0.05. The dashed line shows the estimates using the Kalman-EM pa-
rameter estimates and the solid line shows the estimates using a process-error
only model (the den91 estimates). The circles are the true probabilities. The
difference between the estimates and the true probalities is due to errors in
û. Those errors are due largely to process error—not observation error. As we
saw earlier, by chance population trajectories with a u < 0 will increase, even
over a 30-year period. In this case, û will be positive when in fact u < 0.

Looking at the figure, it is obvious that the probability estimates are highly
variable. However, look at the first panel. This is the average estimate (over
nine simulations). Note that on average (over nine simulations), the estimates
are good. If we had averaged over 1000 simulations instead of nine, you would
see that the Kalman-EM line falls on the true line. It is an unbiased predictor.
While that may seem a small consolation if estimates for individual simulations
are all over the map, it is important for correctly specifying our uncertainty

60 8 Count-based PVA

about our estimates. Second, rather than focusing on how the estimates and
true lines match up, see if there are any types of forecasts that seem better
than others. For example, are 20-year predictions better than 50-year and
are 100-year forecasts better or worse. In Exercise 3, you will remake this
figure with different u. You’ll discover from that forecasts are more certain for
populations that are declining faster.

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

average over sims

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future
pr

ob
ab

ili
ty

 o
f e

xt
in

ct
io

n

simulation 1

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 2

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 3

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 4

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future
pr

ob
ab

ili
ty

 o
f e

xt
in

ct
io

n

simulation 5

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 6

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 7

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 8

● True
Dennis
KalmanEM

Fig. 8.4. Plot of the true and estimated probability of declining 90% in different
time horizons for nine simulated population time series with observation error. The
plot may look like a step-function if the σ2 estimate is very small (<1e-4 or so).

Example 8.3 (The effect of parameter values on risk estimates)

In this example, you will recreate Figure 8.4 using different parameter values.
This will give you a feel for how variability in the data and population pro-
cess affect the risk estimates. You’ll need to run the Example 8.2 code before
running the Example 8.3 code.

8.4 Probability of hitting a threshold Π(xd, te) 61

Example 8.3 code
Type show.doc(MARSS, Case_study_1.R) to open a file with all the example code.

#Needs Exercise 2 to be run first

par(mfrow=c(3,3))

pd = 0.1; xd = -log(pd) # decline threshold

te = 100; tyrs = 1:te # extinction time horizon

for(j in c(10,1:8)){

real.ex = denn.ex = kal.ex = matrix(nrow=te)

#Kalman-EM parameter estimates

u=params[j,1]; Q=params[j,3]

p.ever = ifelse(u<=0,1,exp(-2*u*xd/Q))

for (i in 1:100){

if(is.finite(exp(2*xd*abs(u)/Q))){

sec.part = exp(2*xd*abs(u)/Q)*pnorm((-xd-abs(u)* tyrs[i])/sqrt(Q*tyrs[i]))

}else sec.part=0

kal.ex[i]=p.ever*pnorm((-xd+abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))+sec.part

} # end i loop

#Dennis et al 1991 parameter estimates

u=params[j,2]; Q=params[j,5]

p.ever = ifelse(u<=0,1,exp(-2*u*xd/Q))

for (i in 1:100){

denn.ex[i]=p.ever*pnorm((-xd+abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))+

exp(2*xd*abs(u)/Q)*pnorm((-xd-abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))

} # end i loop

#True parameter values

u=sim.u; Q=sim.Q

p.ever = ifelse(u<=0,1,exp(-2*u*xd/Q))

for (i in 1:100){

real.ex[i]=p.ever*pnorm((-xd+abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))+

exp(2*xd*abs(u)/Q)*pnorm((-xd-abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))

} # end i loop

#plot it

plot(tyrs, real.ex, xlab="time steps into future",

ylab="probability of extinction", ylim=c(0,1), bty="l")

if(j<=8) title(paste("simulation ",j))

if(j==10) title("average over sims")

lines(tyrs,denn.ex,type="l",col="red",lwd=2,lty=1)

lines(tyrs,kal.ex,type="l",col="green",lwd=2,lty=2)

}

legend("bottomright",c("True","Dennis","KalmanEM"),pch=c(1,-1,-1),

col=c(1,2,3),lty=c(-1,1,2),lwd=c(-1,2,2),bty="n")

62 8 Count-based PVA

1. Change sim.R and rerun the Example 8.2 code. Then run the Example 8.3
code. When are the estimates using the process-error only model (den91)
worse and in what way are they worse?

2. You might imagine that you should always use a model that includes ob-
servation error, since in practice observations are never perfect. However,
there is a cost to estimating that extra variance parameter and the cost is
a more variable σ2 (Q) estimate. Play with shortening the time series and
decreasing the sim.R values. Are there situations when the ‘cost’ of the
extra parameter is greater than the ‘cost’ of ignoring observation error?

3. How does changing the extinction threshold (pd) change the extinction
probability curves? (Do not remake the data, i.e. don’t rerun the Example
8.2 code.)

4. How does changing the rate of decline (sim.u) change the estimates of
risk? Rerun the Example 8.2 code using a lower u; this will create a new
matrix of parameter estimates. Then run the Example 8.3 code. Do the
estimates seem better of worse for rapidly declining populations?

5. Rerun the Example 8.2 code using fewer number of years (nYr smaller)
and increase fracmiss. Then run the Example 8.3 code. The graphs will
start to look peculiar. Why do you think it is doing that? Hint: look at the
estimated parameters.

8.5 Certain and uncertain regions

From Example 8.3, you have observed one of the problems with estimates of
the probability of hitting thresholds. Looking over the nine simulations, your
risk estimates will be on the true line sometimes and other times they are
way off. So your estimates are variable and one should not present only the
point estimates of the probability of 90% decline. At the minimum, confidence
intervals need to be added (next section), but even with confidence intervals,
the probability of hitting declines often does not capture our certainty and
uncertainty about extinction risk estimates.

From Example 8.3, you might have also noticed that there are some time
horizons (10, 20 years) for which the estimate are highly certain (the threshold
is never hit), while for other time horizons (30, 50 years) the estimates are all
over the map. Put another way, you may be able to say with high confidence
that a 90% decline will not occur between years 1 to 20 and that by year 100
it most surely will have occurred. However, between the years 20 and 100, you
are very uncertain about the risk. The point is that you can be certain about
some forecasts while at the same time being uncertain about other forecasts.

8.5 Certain and uncertain regions 63

One way to show this is to plot the uncertainty as a function of the forecast,
where the forecast is defined in terms of the forecast length (number of years)
and forecasted decline (percentage). Uncertainty is defined as how much of the
0-1 range your 95% confidence interval covers. Ellner and Holmes (2008) show
such a figure (their Figure 1). Figure 8.5 shows a version of this figure that
you can produce with the function CSEGtmufigure(u= val, N= val, s2p=
val). For the figure, the values u = −0.05 which is a 5% per year decline,
N = 25 so 25 years between the first and last census, and s2p = 0.01 are used.
The process variability for big mammals is typically in the range of 0.002 to
0.02.

20 40 60 80 100

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

Projection interval T yrs

xe
 =

 lo
g1

0(
N

0/
N

e)

50%

90%

99%

nyrs = 30 mu = −0.05 s2.p = 0.01

high certainty P<0.05
high certainty P>0.95
uncertain
highly uncertain

Fig. 8.5. This figure shows your region of high uncertainty (dark grey). In this
region, the minimum 95% confidence intervals (meaning if you had no observation
error) span 80% of the 0 to 1 probability. That is, you are uncertain if the probability
of a specified decline is close to 0 or close to 1. The green (dots) shows where your
upper 95% CIs does not exceed P=0.05. So you are quite sure the probability of
a specified decline is less than 0.05. The red (dots) shows where your lower 95%
confidence interval is above P=.95. So you are quite sure the probability is greater
than P=0.95. The light grey is between these two certain/uncertain extremes.

64 8 Count-based PVA

Example 8.4 (Uncertain and certain regions)

Use the Example 8.4 code to re-create Figure 8.5 and get a feel for when risk
estimates are more certain and when they are less certain. N are the number
of years of data, u is the mean population growth rate, and s2p is the process
variance.

Exercise 8.4 code
Type show.doc(MARSS, Case_study_1.R) to open a file with all the example code.

par(mfrow = c(1, 1))

CSEGtmufigure(N = 30, u = -0.05, s2p = 0.01)

8.6 More risk metrics and some real data

The previous sections have focused on the probability of hitting thresholds
because this is an important and common risk metric used in population
viability analysis and it appears in IUCN Red List criteria. However, as you
have seen, there is high uncertainty associated with such estimates. Part of
the problem is that probability is constrained to be 0 to 1, and it is easy to get
estimates with confidence intervals that span 0 to 1. Other metrics of risk, û
and the distribution of the time to hit a threshold (Dennis et al., 1991), do not
have this problem and may be more informative. Figure 8.6 shows different
risk metrics from Dennis et al. (1991) on a single plot. This figure is generated
by a call to the function CSEGriskfigure():

dat=read.table(datafile, skip=1)

dat=as.matrix(dat)

CSEGriskfigure(dat)

The datafile is the name of the data file, with years in column 1 and pop-
ulation count (logged) in column 2. CSEGriskfigure() has a number of ar-
guments that can be passed in to change the default behavior. The variable
te is the forecast length (default is 100 years), threshold is the extinction
threshold either as an absolute number, if absolutethresh=TRUE, or as a
fraction of current population count, if absolutethresh=FALSE. The default
is absolutethresh=FALSE and threshold=0.1. datalogged=TRUE means the
data are already logged; this is the default.

Example 8.5 (Risk figures for different species)

8.6 More risk metrics and some real data 65

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ●

1970 1974 1978 1982 1986 1990

20
40

60
80

Year

P
op

. E
st

im
at

e

u est = −0.054 (95% CIs −0.15 , 0.046)
 Q est = 0.051

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

years into future

pr
ob

ab
ili

ty
 to

 h
it

th
re

sh
ol

d

Prob. to hit 2

95% CI
75% CI
mean

0 50 100 150 200

0.
00

0
0.

01
0

0.
02

0

years into future

pr
ob

ab
ili

ty
 to

 h
it

th
re

sh
ol

d

PDF of time to threshold
 given it IS reached

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Number of ind. at Ne

pr
ob

ab
ili

ty
 to

 h
it

th
re

sh
ol

d

90% threshold

Prob. of hitting threshold in 100 yrs

0 20 40 60 80 100

0
20

40
60

80

Sample projections

years into the future

N

20 40 60 80 100

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

Projection interval T yrs

xe
 =

 lo
g1

0(
N

0/
N

e)

50%

90%

99%

nyrs = 22 mu = −0.054 s2.p = 0.051

Fig. 8.6. Risk figure using data for the critically endangered African Wild Dog
(data from Ginsberg et al. 1995). This population went extinct after 1992.

Use the Example 8.5 code to re-create Figure 8.6. The package includes other
data for you to run: prairiechicken from the endangered Attwater Prairie
Chicken, graywhales from Gerber et al. (1999), and grouse from the Sharp-
tailed Grouse (a species of U.S. federal concern) in Washington State. Note
for some of these other datasets, the Hessian matrix cannot be inverted and
you will need to use CI.method="parametric". If you have other text files of
data, you can run those too. The commented lines show how to read in data
from a tab-delimited text file with a header line.

66 8 Count-based PVA

Exercise 5 code
Type show.doc(MARSS, Case_study_1.R) to open a file with the example code.

#If you have your data in a tab delimited file with a header

#This is how you would read it in using file.choose()

#to call up a directory browser.

#However, the package has the datasets for the exercises

#dat=read.table(file.choose(), skip=1)

#dat=as.matrix(dat)

dat = wilddogs

CSEGriskfigure(dat, CI.method="hessian", silent=TRUE)

8.7 Confidence intervals

The figures produced by CSEGriskfigure() have confidence intervals (95%
and 75%) on the probabilities in the top right panel. A standard way to
produce these intervals is via parametric bootstrapping. Here are the steps in
a parametric bootstrap:

� You estimate u, σ2 and η2

� Then you simulate time series using those estimates and Equations 8.1 and
8.2

� Then you re-estimate your parameters from the simulated data (using say
MARSS(simdata)

� Repeat for 1000s of time series simulated using your estimated parameters.
This gives you a large set of bootstrapped parameter estimates

� For each bootstrapped parameter set, compute a set of extinction estimates
(you use Equation 8.3 and code from Example 8.3)

� The α% ranges on those bootstrapped extinction estimates gives you your
α confidence intervals on your probabilities of hitting thresholds

The MARSS package provides the function MARSSparamCIs() to add boot-
strapped confidence intervals to fitted models (type ?MARSSparamCIs to learn
about the function).

In the function CSEGriskfigure(), you can set CI.method = c("hessian",
"parametric", "innovations", "none") to tell it how to compute the con-
fidence intervals. The methods ‘parametric’ and ‘innovations’ specify para-
metric and non-parametric bootstrapping respectively. Producing parameter
estimates by bootstrapping is quite slow. Approximate confidence intervals on
the parameters can be generated rapidly using the inverse of a numerically
estimated Hessian matrix (method ‘hessian’). This uses an estimate of the

8.8 Comments 67

variance-covariance matrix of the parameters (the inverse of the Hessian ma-
trix). Using an estimated Hessian matrix to compute confidence intervals is a
handy trick that can be used for all sorts of maximum-likelihood parameter
estimates.

8.8 Comments

Data with cycles, from age-structure or predator-prey interactions, are difficult
to analyze and the Kalman-EM algorithm used in the MARSS package will
give poor estimates for this type of data. The slope method (Holmes, 2001)
is robust to those problems. Holmes et al. (2007) used the slope method in a
large study of data from endangered and threatened species, and Ellner and
Holmes (2008) showed that the slope estimates are close to the theoretical
minimum uncertainty. Especially, when doing a population viability analysis
using a time series with fewer than 25 years of data, the slope method is often
less biased and (much) less variable because that method is less data-hungry
(Holmes, 2004). However the slope method is not a true maximum-likelihood
method and thus constrains the types of further analyses you can do (such as
model selection).

9

Case study 2: Combining multi-site and
subpopulation data to estimate regional
population dynamics

9.1 The problem

In this case study, we will use multivariate state-space models to combine
surveys from multiple regions (or sites) into one estimate of the average long-
term population growth rate and the year-to-year variability in that growth
rate. Note this is not quite the same as estimating the ‘trend’; ‘trend’ often
means what population change happened, whereas the long-term population
growth rate refers to the underlying population dynamics. We will use as our
example a dataset from harbor seals in Puget Sound, Washington, USA.

We have five regions (or sites) where harbor seals were censused from 1978-
1999 while hauled out of land1. During the period of this dataset, harbor seals
were recovering steadily after having been reduced to low levels by hunting
prior to protection. The methodologies were consistent throughout the 20
years of the data but we do not know what fraction of the population that
each region represents nor do we know the observation-error variance for each
region. Given differences between behaviors of animals in different regions and
the numbers of haul-outs in each region, the observation errors may be quite
different. The regions have had different levels of sampling; the best sampled
region has only 4 years missing while the worst has over half the years missing.

Figure 9.1 shows the data. The numbers on each line denote the different
regions:

1 SJF
2 SJI
3 EBays
4 PSnd
5 HC

1 Jeffries et al. 2003. Trends and status of harbor seals in Washington State: 1978-
1999. Journal of Wildlife Management 67(1):208–219

70 9 Combining multi-site and subpopulation data

1

1
1

1

1
1

1 1
1 1

1

1

1

1
1

1

1 1

1980 1985 1990 1995

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

lo
g(

co
un

ts
)

2

2

2
2

2 2

2 2 2
2 2

2 2 2
2

2 2
2

3

3

3
3

3 3 3 3 3 3 3 3 3
3

3
3 3

4

4
4

4

4
4

4 4 4 4

5

5
5

5

5

5
5

5

Puget Sound Harbor Seal Surveys

Fig. 9.1. Plot of the of the count data from the five harbor seal regions (Jeffries et
al. 2003). Each region is an index of the total harbor seal population, but the bias
(the difference between the index and the true population size) for each region is
unknown.

For this case study, we will assume that the underlying population process
is a stochastic exponential growth process with rates of increase that were
not changing through 1978-1999. However, we are not sure if all five regions
sample a single “total Puget Sound” population or if there are independent
subpopulations. You are going to estimate the long-term population growth
rate using different assumptions about the population structures (one big
population versus multiple smaller ones) and observation error structures to
see how your assumptions change your estimates.

The data for this case study are in the MARSS package. The data have
time running down the rows and years in the first column. We need time
across the columns for the MARSS() function, so we will transpose the data:

dat=t(harborSealWA) #Transpose

years = dat[1,] #[1,] means row 1

n = nrow(dat)-1

dat = dat[2:nrow(dat),] #no years

9.2 Analysis assuming a single total Puget Sound population 71

If you needed to read data in from a comma-delimited or tab-delimited file,
these are the commands to do that:

dat = read.csv("datafile.csv",header=TRUE)

dat = read.table("datafile.csv",header=TRUE)

The years (years) are in row 1 of dat and the logged data are in the rest of
the rows. The number of observation time series (n) is the number of rows in
dat minus 1 (for years row). Let’s look at the first few years of data:

print(harborSealWA[1:8,], digits=3)

Years SJF SJI EBays PSnd HC
[1,] 1978 6.03 6.75 6.63 5.82 6.6
[2,] 1979 -99.00 -99.00 -99.00 -99.00 -99.0
[3,] 1980 -99.00 -99.00 -99.00 -99.00 -99.0
[4,] 1981 -99.00 -99.00 -99.00 -99.00 -99.0
[5,] 1982 -99.00 -99.00 -99.00 -99.00 -99.0
[6,] 1983 6.78 7.43 7.21 -99.00 -99.0
[7,] 1984 6.93 7.74 7.45 -99.00 -99.0
[8,] 1985 7.16 7.53 7.26 6.60 -99.0

The -99’s in the data are missing values. The algorithm will ignore those
values.

9.2 Analysis assuming a single total Puget Sound
population

The first step in a state-space modeling analysis is to specify the population
structure and how the regions relate to that structure. The general state-space
model is

xt = Bxt−1 + u + wt, where wt ∼ MVN(0,Q) (9.1)
yt = Zxt + a + vt, where vt ∼ MVN(0,R) (9.2)

where all the bolded symbols are matrices. To specify the structure of the
population and observations, we will specify what those matrices look like.

9.2.1 A single population process, x

When we are looking at data over a large geographic region, we might make the
assumption that the different census regions are measuring a single population
if we think animals are moving sufficiently such that the whole area (multiple
regions together) is ”well-mixed”. We write a model of the total population
abundance as:

nt = exp(u+ vt)nt−1, (9.3)

72 9 Combining multi-site and subpopulation data

where nt is the total count in year t, u is the mean population growth rate,
and vt is the deviation from that average in year t. We then take the log of
both sides and write the model in log space:

xt = xt−1 + u+ vt, where vt ∼ N(0, q) (9.4)

xt = log nt. When there is one effective population, there is one x, therefore
xt is a 1× 1 matrix. There is one population growth rate (u) and there is one
process variance (q). Thus u and Q are 1× 1 matrices.

9.2.2 The observation process, y

For this first analysis, we assume that all five regional time series are observing
this one population trajectory but they are scaled up or down relative to that
trajectory. In effect, we think that animals are moving around a lot and our
regional samples are some fraction of the population. There is year-to-year
variation in the fraction in each region, just by chance. Notice that under this
analysis, we do not think the regions represent independent subpopulations
but rather independent observations of one population. Our model for the
data, yt = Zxt + a + wt, is written as:

y1,t
y2,t
y3,t
y4,t
y5,t

 =


1
1
1
1
1

xt +


0
a2

a3

a4

a5

+


w1,t

w2,t

w3,t

w4,t

w5,t

 (9.5)

Each yi is the time series for a different region. The a’s are the bias between
the regional sample and the total population. The a’s are scaling (or intercept-
like) parameters2. We allow that each region could have a unique observation
variance and that the observation errors are independent between regions.
Lastly, we assume that the observations errors on log(counts) are normal and
thus the errors on (counts) are log-normal.3

We specify independent observation errors with unique variances by speci-
fying that the w’s come from a multivariate normal distribution with variance-
covariance matrix R (w ∼ MVN(0,R)), where
2 To get rid of the a’s, we scale multiple observation time series against each other;

thus one a will be fixed at 0. Estimating the bias between regional indices and
the total population is important for getting an estimate of the total population
size. The type of time-series analysis that we are doing here (trend analysis) is
not useful for estimating a’s. Instead to get a’s one would need some type of
mark-recapture data. However, for trend estimation, the a’s are not important.
The regional observation variance captures increased variance due to a regional
estimate being a smaller sample of th total population.

3 The assumption of normality is not unreasonable since these regional counts are
the sum of counts across multiple haul-outs.

9.2 Analysis assuming a single total Puget Sound population 73

R =


r1 0 0 0 0
0 r2 0 0 0
0 0 r3 0 0
0 0 0 r4 0
0 0 0 0 r5

 (9.6)

Z specifies which observation time series, yi,1:T , is associated with which
population trajectory, xj,1:T . Z is like a look up table with 1 row for each
of the n observation time series and 1 column for each of the m population
trajectories. A 1 in row i column j means that observation time series i is
measuring state process j. Otherwise the value in Zij = 0. Since we have only
1 population trajectory, all the regions must be measuring that one population
trajectory. Thus Z is n× 1:

Z =


1
1
1
1
1

 (9.7)

9.2.3 Set the constraints for MARSS

Now that we have specified our state-space model, we set the arguments that
will tell the function MARSS() the structure of our model. We do this by passing
in the argument constraint to MARSS(). constraint is a list which specifies
any constraints on Z, u, Q, etc. The function call will now look like:

kem = MARSS(dat, constraint=list(Z=Z.constraint, U=U.constraint,

Q=Q.constraint, R=R.constraint))

First we set the Z constraint. We need to tell the MARSS function that Z is
a 5×1 matrix of 1s (as in Equation 9.5). We can do this two ways. We can pass
in Z.constraint as a matrix of ones, matrix(1,5,1), just like in Equation
(9.5) or we can pass in a vector of five factors, factor(c(1,1,1,1,1)). The i-
th factor specifies which population trajectory the i-th observation time series
belongs to. Since there is only one population trajectory in this first analysis,
we will have a vector of five 1’s: every observation time series is measuring the
first, and only, population trajectory.

Z.constraint = factor(c(1,1,1,1,1))

Note, the vector (the c() bit) must be wrapped in factor() so that MARSS
recognizes what it is. You can use either numeric or character vectors:
c(1,1,1,1,1) is the same as c("PS","PS","PS","PS","PS").

Next we specify that the R variance-covariance matrix only has terms
on the diagonal (the variances) with the off-diagonal terms (the covariances)
equal to zero4:
4 For the EM function in the MARSS 1.0 package, the measurement errors must

be uncorrelated if there are missing values in the data.

74 9 Combining multi-site and subpopulation data

R.constraint = "diagonal and unequal"

The ‘and unequal’ part specifies that the variances are allowed to be unique
on the diagonal. If we wanted to force the observation variances to be equal
at all regions, we would use "diagonal and equal".

For the first analysis, we only need to set constraints on Z and R. Since
there is only one population, there is only one u and Q (they are scalars), so
there are no constraints to set on them.

1

1
1

1

1
1

1 1
1 1

1

1

1

1
1

1

1 1

1980 1985 1990 1995

5
6

7
8

9

in
de

x
of

 lo
g

ab
un

da
nc

e

2

2

2
2

2 2

2 2 2
2 2

2 2 2 2
2 2

2

3

3
3

3
3 3 3 3 3 3 3 3 3

3
3

3 3

4

4
4

4

4
4

4 4 4 4

5

5
5

5

5

5
5

5

Observations and total population estimate

Fig. 9.2. Plot of the estimate of “log total harbor seals in Puget Sound” (minus the
unknown bias for time series 1) against the data. The estimate of the total seal count
has been scaled relative to the first time series. The 95% confidence intervals on the
population estimates are the dashed lines. These are not the confidence intervals
on the observations, and the observations (the numbers) will not fall between the
confidence interval lines.

9.2.4 The MARSS() output

The output from MARSS(), here assigned the name kem, is a list of objects. To
see all the objects in it, type:

9.2 Analysis assuming a single total Puget Sound population 75

names(kem1)

The maximum-likelihood estimates of “total harbor seal population” scaled
to the first observation data series (Figure 9.2) are in kem1$states, and
kem1$states.se are the standard errors on those estimates. To get 95% con-
fidence intervals, use kem1$states +/- 1.96*kem1$states.se. Figure 9.2
shows a plot of kem1$states with its 95% confidence intervals over the data.
Because kem1$states has been scaled relative to the first time series, it is on
top of that time series. One of the biases, the as, cannot be estimated and
arbitrarily our algorithm choses a1 = 0, so the population estimate is scaled
to the first observation time series.

The estimated parameters are a list: kem1$par. To get the element U of
that list, which is the estimated long-term population growth rate, type in
kem1parU. Multiply by 100 to get the percent increase per year. The esti-
mated process variance is given by kem1parQ.

The log-likelihood of the fitted model is in kem1$logLik. We estimated one
initial x (t = 1), one process variance, one u, four a’s, and five observation
variances’s. So K = 12 parameters. The AIC of this model is −2×loglike+2K,
which we can show by typing kem1$AIC.

Example 9.1 (Fit the single population model)

Analyze the harbor seal data using the single population model (Equations 9.4
and 9.5). The code for Example 9.1 shows you how to input data and send
it to the function MARSS(). As you run the examples, add the estimates to
the table at the end of the chapter so you can compare estimates across the
examples.

76 9 Combining multi-site and subpopulation data

Example 9.1 code
Type show.doc(MARSS, Case_study_2.R) to open a file with all the example code.

#Read in data

dat=t(harborSealWA) #Transpose since MARSS needs time ACROSS columns

years = dat[1,]

n = nrow(dat)-1

dat = dat[2:nrow(dat),]

legendnames = (unlist(dimnames(dat)[1]))

#estimate parameters

Z.constraint = factor(c(1,1,1,1,1))

R.constraint = "diagonal and unequal"

kem1 = MARSS(dat, constraint=

list(Z=Z.constraint, R=R.constraint))

#make figure

matplot(years, t(dat),xlab="",ylab="index of log abundance",

pch=c("1","2","3","4","5"),ylim=c(5,9),bty="L")

lines(years,kem1$states-1.96*kem1$states.se,type="l",

lwd=1,lty=2,col="red")

lines(years,kem1$states+1.96*kem1$states.se,type="l",

lwd=1,lty=2,col="red")

lines(years,kem1$states,type="l",lwd=2)

title("Observations and total population estimate",cex.main=.9)

#show params

kem1$par

kem1$logLik

kem1$AIC

9.3 Changing the assumption about the observation
variances

The variable kem1parR contains the estimates of the observation error vari-
ances. It is a matrix. Here is R from Example 9.1:

print(kem1parR, digits=3)

SJF:1 SJI:2 EBays:3 PSnd:4 HC:5
SJF:1 0.0322 0.0000 0.0000 0.0000 0.000
SJI:2 0.0000 0.0351 0.0000 0.0000 0.000
EBays:3 0.0000 0.0000 0.0136 0.0000 0.000
PSnd:4 0.0000 0.0000 0.0000 0.0110 0.000
HC:5 0.0000 0.0000 0.0000 0.0000 0.197

9.3 Changing the assumption about the observation variances 77

Notice that the variances along the diagonal are all different—we estimated
five unique observation variances. We might be able to improve the fit (relative
to the number of estimated parameters) by assuming that the observation
variance is equal across regions but the errors are independent. This means
we estimate one observation variance instead of five. This is a fairly standard
assumption for data that come from the uniform survey methodology5.

To impose this constraint, we set the R constraint to

R.constraint="diagonal and equal"

This tells MARSS that all the r’s along the diagonal in R are the same. To fit
this model to the data, call MARSS() as:

Z.constraint = factor(c(1,1,1,1,1))

R.constraint = "diagonal and equal"

kem2 = MARSS(dat, constraint=

list(Z=Z.constraint, R=R.constraint))

We estimated one initial x, one process variance, one u, four a’s, and one
observation variance. So K = 8 parameters. The AIC for this new model
compared to the old model with five observation variances is:

c(kem1$AIC,kem2$AIC)

[1] -9.316477 8.849526

A smaller AIC means a better model. The difference between the one observa-
tion variance versus the unique observation variances is >10, suggesting that
the unique observation variances model is better. Go ahead and type in the
R code. Then add the parameter estimates to the table at the back.

One of the key diagnostics when you are comparing fits from multiple
models, it to examine whether the model is flexible enough to fit the data.
You do this by looking for temporal trends in the the residuals between the
estimated population states (e.g. kem2$states) and the data. In Figure 9.3,
the residuals for the second analysis are shown. Ideally, these residuals should
not have a temporal trend. They should look cloud-like. The fact that the
residuals have a strong temporal trend is an indication that our one population
model is too restrictive for the data6.

Example 9.2 (Fit a model with shared observation variances)

5 By the way, this is not a good assumption for these data since the number haul-
outs in each region varies and the regional counts are the sums across all haul-outs
in a region. We will see that this is a poor assumption when we look at the AIC
values.

6 When comparing models via AIC, it is important that you only compare models
that are flexible enough to fit the data. Fortunately if you neglect to do this,
the inadequate models will usually have very high AICs and fall out of the mix
anyhow.

78 9 Combining multi-site and subpopulation data

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

5 10 15

−
0.

4
−

0.
2

0.
0

0.
2

Index

re
si

du
al

s

SJF

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

5 10 15

−
0.

4
0.

0
0.

2

Index

re
si

du
al

s

SJI

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

5 10 15

−
0.

2
0.

0
0.

1
0.

2

Index

re
si

du
al

s

EBays

●

●

●

●

●

●

●
● ● ●

2 4 6 8

−
0.

2
0.

0
0.

1

Index

re
si

du
al

s

PSnd

●

●

●

●

●

●

●

●

1 3 5 7

−
0.

4
0.

0
0.

4
0.

8

Index

re
si

du
al

s

HC

Fig. 9.3. Residuals for the model with a single population. The plots of the residuals
should not have trends with time, but they do... This is an indication that the single
population model is inconsistent with the data. The code to make this plot is given
in the script file for this case study.

Analyze the data using the same population model as in Example 9.1, but con-
strain the R matrix so that all five census regions have the same observation
variance. The Example 9.2 code shows you how to do this. It also shows you
how to make the diagnostics figure (Figure 9.3).

9.4 Analysis assuming north and south subpopulations 79

Example 9.2 code
Type show.doc(MARSS, Case_study_2.R) to open a file with all the example code.

#fit model

Z.constraint = factor(c(1,1,1,1,1))

R.constraint = "diagonal and equal"

kem2 = MARSS(dat, constraint=

list(Z=Z.constraint, R=R.constraint))

#show parameters

kem2parU #population growth rate

kem2parQ #process variance

kem2parR[1,1] #observation variance

kem2$logLik #log likelihood

c(kem1$AIC,kem2$AIC)

#plot residuals

plotdat = t(dat); plotdat[plotdat == -99] = NA;

matrix.of.biases = matrix(kem2parA,

nrow=nrow(plotdat),ncol=ncol(plotdat),byrow=T)

xs = matrix(kem2$states,

nrow=dim(plotdat)[1],ncol=dim(plotdat)[2],byrow=F)

resids = plotdat-matrix.of.biases-xs

par(mfrow=c(2,3))

for(i in 1:n){

plot(resids[!is.na(resids[,i]),i],ylab="residuals")

title(legendnames[i])

}

par(mfrow=c(1,1))

9.4 Analysis assuming north and south subpopulations

For the third analysis, we will change our assumption about the structure
of the population. We will assume that there are two subpopulations, north
and south, and that regions 1 and 2 (Strait of Juan de Fuca and San Juan
Islands) fall in the north subpopulation and regions 3, 4 and 5 fall in the south
subpopulation. For this analysis, we will assume that these two subpopulations
share their growth parameter, u, and process variance, q, since they share
a similar environment and prey base. However we postulate that because of
fidelity to natal rookeries for breeding, animals do not move much year-to-year
between the north and south and the two subpopulations are independent.

We need to write down the state-space model to reflect this population
structure. There are two subpopulations, xn and xs, and they have the same

80 9 Combining multi-site and subpopulation data

growth rate u: [
xn,t
xs,t

]
=
[
xn,t−1

xs,t−1

]
+
[
u
u

]
+
[
vn,t
vs,t

]
(9.8)

We specify that they are independent by specifying that their year-to-year
population fluctuations (their process errors) come from a multivariate normal
with no covariance: [

vn,t
vs,t

]
∼MVN

([
0
0

]
,

[
q 0
0 q

])
(9.9)

For the observation process, we use the Z matrix to associate the regions
with their respective xn and xs values:

y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0
1 0
0 1
0 1
0 1


[
xn,t
xs,t

]
+


0
a2

0
a4

a5

+


w1,t

w2,t

w3,t

w4,t

w5,t

 (9.10)

9.4.1 Specifying the MARSS() arguments

We need to change the Z constraint to specify that there are two subpopula-
tions (north and south), and that regions 1 and 2 are in the north subpopu-
lation and regions 3,4 and 5 are in the south subpopulation. There are a few
ways, we can specify this Z matrix for MARSS():

Z.constraint = matrix(c(1,1,0,0,0,0,0,1,1,1),5,2)

Z.constraint = factor(c(1,1,2,2,2))

Z.constraint = factor(c("N","N","S","S","S"))

Which you choose is a matter of preference as the all specify the same form
for Z.

We also want to specify that the u’s are the same for each subpopulation
and that Q is diagonal with equal q’s. To do this, we set

U.constraint = "equal"

Q.constraint = "diagonal and equal"

This says that there is one u and one q parameter and both subpopulations
share it (if we wanted the u’s to be different, we would use U.constraint="unequal"
or leave off the u constraint since the default behavior is U.constraint="unequal").

Now we specify the new constraints and fit this model to the data:

Z.constraint = factor(c(1,1,2,2,2))

U.constraint = "equal"

Q.constraint = "diagonal and equal"

R.constraint = "diagonal and equal"

kem3 = MARSS(dat, constraint=list(Z=Z.constraint,

R=R.constraint, U=U.constraint, Q=Q.constraint))

9.4 Analysis assuming north and south subpopulations 81

Success! Parameters converged at 20 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Estimation converged in 20 iterations.
Log-likelihood: 11.52836
AIC: -7.056721 AICc: -4.73414

Estimate
A.2 0.79879
A.4 -0.75590
A.5 -0.81696
Q.1 0.00812
R.1 0.02928
U.1 0.05036
x0.1 6.06203
x0.2 6.83393

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

Figure 9.4 shows the residuals for the two subpopulations case. The resid-
uals look better (more cloud-like) but the Hood Canal residuals are still tem-
porally correlated.

Example 9.3 (Fit a model with north and south subpopulations)

Analyze the data using a model with two subpopulations, northern and south-
ern. Assume that the subpopulation are independent (diagonal Q), however
let each subpopulation share the same population parameters, u and q. The
Example 9.3 code shows how to set the MARSS() arguments for this case.

82 9 Combining multi-site and subpopulation data

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

5 10 15

−
0.

2
0.

0
0.

2

Index

re
si

du
al

s

SJF

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

5 10 15

−
0.

15
0.

00
0.

10

Index

re
si

du
al

s

SJI

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

5 10 15

−
0.

2
0.

0
0.

1

Index

re
si

du
al

s

EBays

●

●

●

●

●

●

● ●
●

●

2 4 6 8

−
0.

3
−

0.
1

0.
1

Index

re
si

du
al

s

PSnd

●

●

●

●

●

●

●

●

1 3 5 7

−
0.

4
0.

0
0.

2
0.

4

Index

re
si

du
al

s

HC

Fig. 9.4. The residuals for the analysis with a north and south subpopulation. The
plots of the residuals should not have trends with time. Compare with the residuals
for the analysis with one subpopulation.

Example 9.3 code
Type show.doc(MARSS, Case_study_2.R) to open a file with all the example code.

#fit model

Z.constraint = factor(c(1,1,2,2,2))

U.constraint = "equal"

Q.constraint = "diagonal and equal"

R.constraint = "diagonal and equal"

kem3 = MARSS(dat, constraint=list(Z=Z.constraint,

R=R.constraint, U=U.constraint, Q=Q.constraint))

#plot residuals

plotdat = t(dat); plotdat[plotdat == -99] = NA;

matrix.of.biases = matrix(kem3parA,

nrow=nrow(plotdat),ncol=ncol(plotdat),byrow=T)

par(mfrow=c(2,3))

for(i in 1:n){

j=c(1,1,2,2,2)

xs = kem3$states[j[i],]

resids = plotdat[,i]-matrix.of.biases[,i]-xs

plot(resids[!is.na(resids)],ylab="residuals")

title(legendnames[i])

}

par(mfrow=c(1,1))

9.5 Using MARSS() to fit other population structures 83

9.5 Using MARSS() to fit other population structures

Now work through a number of different structures and fill out the table at
the back of this case study. At the end you will see how your estimation of
the mean population growth rate varies under different assumptions about
the population and the data.

Example 9.4 (Five subpopulations)

Analyze the data using a model with five subpopulations, where each of
the five census regions is sampling one of the subpopulations. Assume that
the subpopulation are independent (diagonal Q), however let each subpop-
ulation share the same population parameters, u and q. The Example 9.4
code shows how to set the MARSS() arguments for this case. You can use
R.constraint="diagonal and equal" to make all the observation variances
equal.

Example 9.4 code
Type show.doc(MARSS, Case_study_2.R) to open a file with all the example code.

Z.constraint=factor(c(1,2,3,4,5))

U.constraint="equal"

Q.constraint="diagonal and equal"

R.constraint="diagonal and unequal"

kem=MARSS(dat, constraint=list(Z=Z.constraint,

U=U.constraint, Q=Q.constraint, R=R.constraint))

Example 9.5 (Two subpopulations with different population param-
eters)

Analyze the data using a model that assumes that the Strait of Juan de Fuca
and San Juan Islands census regions represent a northern Puget Sound sub-
population, while the other three regions represent a southern Puget Sound sub-
population. This time assume that each population trajectory (north and south)
has different u and q parameters: un,us and qn,qs. Also assume that each
of the five census regions has a different observation variance. Try to write
your own code. If you get stuck (or want to check your work, you can open
a script file with all the Case Study 2 examples by typing show.doc(MARSS,

Case_study_2.R) at the R command line.

84 9 Combining multi-site and subpopulation data

In math form, this model is:[
xn,t
xs,t

]
=
[
xn,t−1

xs,t−1

]
+
[
un
us

]
+
[
vn,t
vs,t

]
,

[
vn,t
vs,t

]
∼ MVN

(
0,
[
qn 0
0 qs

])
(9.11)


y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0
1 0
0 1
0 1
0 1


[
xn,t
xs,t

]
+


0
a2

0
a4

a5

+


w1,t

w2,t

w3,t

w4,t

w5,t

 (9.12)

Example 9.6 (Hood Canal treated separately but covaries with oth-
ers)

Analyze the data using a model with two subpopulations with the divisions
being Hood Canal versus everywhere else. In math form, this model is:[

xp,t
xh,t

]
=
[
xp,t−1

xh,t−1

]
+
[
up
uh

]
+
[
vp,t
vh,t

]
,

[
vp,t
vh,t

]
∼ MVN

(
0,
[
q c
c q

])
(9.13)


y1,t
y2,t
y3,t
y4,t
y5,t

 =


1 0
1 0
1 0
1 0
0 1


[
xp,t
xh,t

]
+


0
a2

a3

a4

0

+


w1,t

w2,t

w3,t

w4,t

w5,t

 (9.14)

To specify that Q has one value on the diagonal (one variance) and one value
on the off-diagonal (covariance) you can specify Q.constraint two ways:

Q.constraint = "equalvarcov"

Q.constraint = matrix(c("q","c","c","q"),2,2)

Example 9.7 (Three subpopulations with shared parameter values)

Analyze the data using a model with three subpopulations as follows: north
(regions 1 and 2), south (regions 3 and 4), Hood Canal (region 5). You can
specify that some subpopulations share parameters while others do not. You
do this by using a vector of factors for the constraints:

9.6 Discussion 85

Q.constraint=factor(c("coastal","interior","interior"))

U.constraint=factor(c("puget sound","puget sound","hood canal"))

R.constraint=factor(c("boat","boat","plane","plane","plane"))

When Q.constraint and U.constraint are vectors (passed in as a factor),
as above, they specify which x’s share parameter values. The factors must be a
vector of length m, where m is the number of x’s. The i-th factor corresponds
to the i-th x. In the example above, we specified that x1 has its own process
variance (which we named “coastal”) and x2 and x3 share a process variance
value (which we named “interior”). For the long-term trends, we specified that
x1 and x2 share a long-term trend (“puget sound”) while x3 is allowed to have
a separate trend (“hood canal”).

When R.constraint is vector of factors, it specifies which y’s have the same
observation variance. We need a 1× 5 vector here because we need to specify
a value for each observation time series (there are 5). Here we imagine that
observation time series 1 and 2 are boat surveys while the others are plane
surveys and we want to allow the variances to differ based on methodology.

9.6 Discussion

There are a number of corners that we cut in order to have case study code
that runs quickly:

� We ran the code starting from one initial condition. For a real analysis,
you should start from a large number of random initial conditions and
use the one that gives the highest likelihood. Since the EM algorithm is
a “hill-climbing” algorithm, this ensures that it does not get stuck on a
local maxima. MARSS() will do this for you if you pass it the argument
control=list(MCInit=TRUE). This will use a Monte Carlo routine to try
many different initial conditions. See the help file on MARSS() for more
information (by typing ?MARSS at the R prompt).

� We assume independent observation and process errors. Depending on your
system, observation errors may be driven by large-scale environmental fac-
tors (temperature, tides, prey locations) that would cause your observation
errors to covary across regions. If your observation errors strongly covary
between regions and you treat them as independent, this could be bad for
your analysis. The current EM code will not handle covariance in R when
there are missing data, but even it did, separating covariance across obser-
vation versus process errors will require much data (to have any power).
In practice, the first step is to think hard about what drives sightability
for your species and what are the relative levels of process and observation
variance. You may be able to subsample your data in a way that will make
the observation errors more independent.

86 9 Combining multi-site and subpopulation data

� The MARSS() argument control specifies the options for the EM algo-
rithm. We left the default tolerance for the convergence test. You would
want to set this lower for a real analysis. You will need to up the maxit
argument correspondingly.

� We used the large-sample approximation for AIC instead of a bootstrap
AIC that is designed to correct for small sample size in state-space mod-
els. The bootstrap metric, AICb, takes a long time to run. Use the call
MARSSaic(kem, output=c("AICbp")) to compute AICb. We could have
shown AICc, which is the small-sample size corrector for non-state-space
models. Type kem$AICc to get that.

Finally, in a real (maximum-likelihood) analysis, one needs to be careful
not to dredge the data. The temptation is to look at the data and pick a
population structure that will fit that data. This can lead to including models
in your analysis that have no biological basis. In practice, we spend a lot of
time discussing the population structure with biologists working on the species
and review all the biological data that might tell us what are reasonable
structures. From that, a set of model structures to use are selected. Other
times, a particular model structure needs to be used because the population
structure is not in question rather it is a matter of using that pre-specified
structure and using all the data to get parameter estimates for forecasting.

9.6 Discussion 87

Results table

pop. growth process K log-like
Ex. rate variance kem$num. kem$ AIC

kemparU kemparQ params logLik kem$AIC
1 one population

different obs. vars
uncorrelated

2 one population
identical obs vars

uncorrelated
3 N+S subpops

identical obs vars
uncorrelated;

4 5 subpops
unique obs vars
u’s + q’s identical

5 N+S subpops
unique obs vars
u’s + q’s identical

6 PS + HC subpops
unique obs vars
u’s + q’s unique

7 N + S + HC subpops
unique obs vars
u’s + q’s unique

For AIC, only the relative differences matter. A difference of 10 between
two AICs means substantially more support for the model with lower AIC. A
difference of 30 or 40 between two AICs is very large.

Questions

1. Do different assumptions about whether the observation error variances
are all identical versus different affect your estimate of the long-term pop-
ulation growth rate (u)? You may want to rerun examples 3-7 with the
R.constraint changed. R.constraint="diagonal and unequal" means
measurement variances all different versus "diagonal and equal".

2. Do assumptions about the underlying structure of the population affect
your estimates of u? Structure here means number of subpopulations and
which areas are in which subpopulation.

88 9 Combining multi-site and subpopulation data

3. The confidence intervals for the first two analyses are very tight because
the estimate process variance was very small, kem1parQ. Why do you
think process variance (q) was forced to be so small? [Hint: We are forc-
ing there to be one and only one true population trajectory and all the
observation time series have to fit that one time series. Look at the AICs
too.]

10

Case Study 3: Using MARSS models to
identify spatial population structure and
covariance

10.1 The problem

In this case study, we use time series of observations from nine sites along
the west coast to examine large-scale spatial structure in harbor seals (Jeffries
et al., 2003). Harbor seals are distributed along the west coast of the U.S.
from California to Washington. The populations in Oregon and Washington
have been surveyed for over 25 years at a number of haul-out sites (Figure
10.1). In general, these populations have been increasing steadily since the
1972 Marine Mammal Protection Act. It remains unknown whether they are
at carrying capacity.

For management purposes, two stocks are recognized; the coastal stock
consists of four sites (Northern/Southern Oregon, Coastal Estuaries, Olympic
Peninsula), and the inland WA stock consists of the remaining five sites (Fig-
ure 10.1). Subtle differences exist in the demographics across sites (e.g. pup-
ping dates), however mtDNA analyses and tagging studies have suggested that
these sites may be structured on a much larger scale. Harbor seals are known
for strong site fidelity, but at the same time travel large distances to forage.

Our goal for this case study is to address the following questions about
spatial structure: 1) Does population abundance data support the existing
management boundaries, or are there alternative groupings that receive more
support? and 2) Does the Hood Canal site represent a distinct subpopula-
tion? To address these questions, we will mathematically formulate differ-
ent hypotheses about population structure via different MARSS models; each
model represents a different population structure. We will then compare the
data support for different models using model selection criteria, specifically
AIC.

Type show.doc(MARSS, Case_study_3.R) to open a file with the R code
to get you started on the analyses in this chapter.

90 10 Using MARSS models to identify spatial population structure and covariance
Figure 01. Map of spatial distribution of 9 harbor seal sites in Washington and Oregon.

Southern Coast

Northern Coast

Coastal Estuaries

Olympic
Peninsula

Juan de Fuca
San Juans

H ood Canal

Puget Sound

Eastern Bays

Fig. 10.1. Map of spatial distribution of 9 harbor seal sites in Washington and
Oregon.

10.2 How many distinct subpopulations?

We will analyze the support for five hypotheses about the population struc-
ture. These do not represent all possible structures but instead represent those
that are considered most biologically plausible given the geography and the
behavior of harbor seals.

Hypothesis 1 Sites are grouped by stock (m = 2), unique process variances
Hypothesis 2 Sites are grouped by stock (m = 2), same process variance
Hypothesis 3 Sites are grouped by state (m = 2), unique process variances
Hypothesis 4 Sites are grouped by state (m = 2), same process variance
Hypothesis 5 All sites are part of the same panmictic population (m = 1)

Aerial survey methodology has been relatively constant across time and
space, and we will assume that all sites have identical and independent obser-
vation error variance.

10.2 How many distinct subpopulations? 91

10.2.1 Specify the design, Z, matrices

Write down the Z matrices for the hypotheses. Hint: Hypothesis 1 and 2
have the same Z matrix, Hypothesis 3 and 4 have the same Z matrix and
Hypothesis 5 is a column of 1s.

H 1 and 2 H 3 and 4 H 5
Z Z Z

subpop subpop subpop subpop subpop
1 2 1 2 1

Coastal Estuaries

Olympic Peninsula

Str. Juan de Fuca

San Juan Islands

Eastern Bays

Puget Sound

Hood Canal

OR North Coast

OR South Coast













Next you need to specify the constraints argument so that MARSS knows
the structure of your Z’s. The Z constraint will be a vector of factors, i.e. it
will have the form factor(c(....)).

� Hypothesis 1 and 2: Z.constraint=
� Hypothesis 3 and 4: Z.constraint=
� Hypothesis 5: Z.constraint=

10.2.2 Specify the grouping arguments

For this case study, we will assume that subpopulations share the same growth
rate. What should U.constraint be for each hypothesis? To specify shared u
parameters, U.constraint is set as a length m vector of factors and specifies
which subpopulations share their u parameter. Written in R it takes the form
factor(c(#,#,...))

� Hypothesis 1-4: U.constraint=
� Hypothesis 5: U.constraint=

What about Q.constraint? To specify a diagonal Q matrix with shared
values along the diagonal, Q.constraint is set as a length m vector of factors.
The vector specifies which xi’s share their process variance parameter. Look
at each hypothesis (above) and write down the corresponding Q.constraint.

92 10 Using MARSS models to identify spatial population structure and covariance

� Hypothesis 1: Q.constraint=
� Hypothesis 2: Q.constraint=
� Hypothesis 3: Q.constraint=
� Hypothesis 4: Q.constraint=
� Hypothesis 5: Q.constraint=

Lastly, specify R.constraint. As we mentioned above, we will assume that
the observation errors are independent and the observation variance is the
same across sites. You can specify this constraint either as a text string or as
a n length vector of factors.

� Hypothesis 1-5: R.constraint=

10.2.3 Fit models and summarize results

Fit each model for each hypothesis to the seal data (look at the script
Case_Study_3.R for the code to load the data). Each call to MARSS() will
look like

kem = MARSS(sealData, constraint=list(Z = Z.constraint,

Q = Q.constraint, R = R.constraint, U = U.constraint))

Fill in the following table, by fitting the five state-space models—for the five
hypotheses—to the harbor seal data (using MARSS()). Use the Case_Study_3.R
script so you do not have to type in all the commands.

10.2.4 Interpret results for question 1

What do these results indicate about the process error grouping and spatial
grouping? A lower AIC means a more parsimonious model (highest likelihood
given the number of parameters). A difference of 10 between AICs is large, and
means the model with the higher AIC is unsupported relative to the model
with lower AIC.

Extra analysis (if you have time): Do your results change if you assume
that observation errors are independent but have unique variances? The nine
sites have different numbers of haul-outs and so the observation variances
might be different. Repeat the analysis with unique observation variances for
each site (this means changing R.constraint). You can also try the analysis
with temporally co-varying subpopulations (good and bad years correlated) by
setting Q.constraint="unconstrained" or Q.constraint="equalvarcov".

10.3 Is Hood Canal separate? 93

Table 10.1. Table to fill out for the five hypotheses from the first analysis (Section
10.2). The code of the form foobar shows you what to type at the command line
to output each parameter or metric. Remember to add the name of the model fit,
e.g. kemfoobar where kem is the name you gave to the model fit.

pop. growth K
H rate proc. variance obs. variance $num. log-like AIC AICc

parU parQ parR params $logLik $AIC $AICc

1

2

3

4

5

10.3 Is Hood Canal separate?

The Hood Canal site may represent a distinct population, and has recently
been subjected to a number of catastrophic events (hypoxic events, possibly
leading to reduced prey availability, and several killer whale predation events,
removing up to 50% of animals per occurrence). Build four models, assuming
that each site (other than Hood Canal) is assigned to its current management
stock, but Hood Canal is a different subpopulation (m = 3). Again, assume
that observation error variance is identical and independent across sites.

Hypothesis 1 Subpopulations have the same process variance and growth rate
Hypothesis 2 Each subpopulation has a unique process variance and growth

rate
Hypothesis 3 Hood Canal has the same process variance but different growth

rate
Hypothesis 4 Hood Canal has unique process variance and unique growth rate

10.3.1 Specify the Z matrix and Z.constraint

The Z matrix for each hypothesis is the same. The coastal subpopulation
consists of 4 sites (Northern/Southern Oregon, Coastal Estuaries, Olympic
Peninsula), the Hood Canal subpopulation is the Hood Canal site, and the

94 10 Using MARSS models to identify spatial population structure and covariance

inland WA subpopulation consists of the remaining 4 sites. Thus m = 3 and
Z is a 9× 3 matrix:

subpop subpop subpop
1 2 3

Coastal Estuaries
Olympic Peninsula
Str. Juan de Fuca
San Juan Islands

Eastern Bays
Puget Sound
Hood Canal

OR North Coast
OR South Coast





Then write down Z.constraint for this Z: factor(c(...))

10.3.2 Specify which parameters are shared across which
subpopulations

U.groups specifies which u are shared across subpopulations. Look at the
hypothesis descriptions above which will specify whether subpopulations share
their population growth rate or have unique population growth rates.

� Hypothesis 1: U.constraint=
� Hypothesis 2: U.constraint=
� Hypothesis 3: U.constraint=
� Hypothesis 4: U.constraint=

U.constraint will be a length m vector of factors. Once you have more than
two subpopulations, it can get hard to keep straight which U.constraint goes
to which subpopulation. It is best to sketch your Z matrix (which tells you
which site in the rows corresponds to which subpopulation in the columns).
Then remember that the elements of U.constraint correspond one-to-one
with the columns of Z:

U.constraint=factor(c(col 1 Z, col 2 Z, col 3 Z, ..)).
Specify Q.groups showing which subpopulations share their process vari-

ance parameter.

� Hypothesis 1: Q.constraint=
� Hypothesis 2: Q.constraint=
� Hypothesis 3: Q.constraint=
� Hypothesis 4: Q.constraint=

Q.constraint will be a length m vector of factors. R.constraint is set so
that the observation variances are the same for each site.

10.3 Is Hood Canal separate? 95

10.3.3 Fit the models and summarize results

Fit each model for each hypothesis to the seal data. Each call to MARSS() will
look like

kem = MARSS(sealData, constraint=list(Z = Z.constraint,

Q = Q.constraint, R = R.constraint, U = U.constraint))

Table 10.2. Table to fill out for the four hypotheses from the second analysis (Sec-
tion 10.3). The code of the form foobar shows you what to type at the command
line to output each parameter or metric. Remember to add the name of the model
fit, e.g. kemfoobar where kem is the name you gave to the model fit.

pop. growth K
H rate proc. variance obs. variance $num. log-like AIC AICc

parU parQ parR params $logLik $AIC $AICc

1

2

3

4

10.3.4 Interpret results for question 2

How do the residuals for the Hood Canal site compare from these models
relative to the best model from question 1? Hint: If you have the vector of
estimated population states (Xpred = t(kem$states)) and the data (Xobs =
sealData), the residuals for site i can be plotted in R as:

Xpred = t(kem$states)

Xobs = sealData

plot(Xpred[, Z.constraint[i]] - Xobs[,i],

ylab="Predicted-Observed Data")

96 10 Using MARSS models to identify spatial population structure and covariance

In R , if you have a matrix Y[1:numYrs, 1:n], you can extract column j by
writing Yj = Y[,j].

Relative to the previous models from question 1, do these scenarios have
better or worse AIC scores (smaller AIC is better)? If you were to provide
advice to managers, would you recommend that the Hood Canal population is
a source or sink? What implications does this have for population persistence?

Code for Case Study 3
Type show.doc(MARSS, Case_study_3.R) to open a file in R with all the
example code.

11

Case Study 4: Dynamic factor analysis (DFA)
using MARSS

11.1 Dynamic factor analysis

In this case study, we use MARSS to do dynamic factor analysis (DFA) to
look for common a set of underlying state processes that explain a set of time
series (Harvey, 1989, sec. 8.5). Zuur et al. (2003) show a number of examples
of using DFA to analyze fisheries catch data and zoobenthic abundances.
This is conceptually different that what we have been doing in the previous
case studies. Here we are trying to explain a set of n time series using linear
combinations of a set of m hidden random walks.

A DFA model is a type of MARSS model with the following structure:

yt = Zxt + a + vt
where vt ∼ MVN(0,R)

xt = xt−1 + wt

where wt ∼ MVN(0,Q)
x0 ∼ MVN(π,V0)

(11.1)

The x’s are the hidden random walks (or trends) and Zxt is a linear combi-
nation of these. The objective is to estimate Z and x. The Z matrix gives the
factor loadings.

We will start by using a data set with six time series, thus n = 6. We will
fit a model with three hidden random walks (or trends), thus m = 3. If we
write out the model parameter matrices, this DFA model looks like so,

98 11 Using MARSS to do dynamic factor analysis
y1,t
y2,t
y3,t
y4,t
y5,t
y6,t

 =


γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33

γ41 γ42 γ43

γ51 γ52 γ53

γ61 γ62 γ63

xt +


a1

a2

a3

a4

a5

a6

+


w1,t

w2,t

w3,t

w4,t

w5,t

w6,t


x1,t

x2,t

x3,t

 =

1 0 0
0 1 0
0 0 1

x1,t−1

x2,t−1

x3,t−1

+

0
0
0

+

v1,tv2,t
v3,t


(11.2)

The B and u matrices have been added because MARSS will need values for
these.

11.1.1 Constraints to ensure identifiability

If Z, A and Q are not constrained, then a DFA model is not identifiable (Har-
vey, 1989, sec 4.4). Harvey (1989, sec. 8.5.1) suggests the following constraints
to make the model identifiable:

� The Q matrix is constrained to be the identity matrix (a m×m diagonal
matrix of 1s).

� In the first m− 1 rows of Z, the j-th column in the i-th row is set to zero
if j > i.

� The a vector is constrained such that the first m values are zero.

Zuur et al. (2003), however, note that with Harvey’s third constraint, the EM-
algorithm is not particularly robust, and it takes forever to converge. Zuur et
al. show that the EM estimates are much better behaved if you use a different
type of constraint on the a parameter. Constrain xt to have a mean of zero.
This means that you replace your estimates of the hidden states, xTt coming
out of the Kalman smoother with xTt − x̄ for t = 0 to T . x̄ is the mean xt
value across t for t = 0 to T (the mean is across t not m). With this approach,
you estimate all the a elements (none are set to zero) and they represent the
average level of yt relative to Z(xt − x̄). Forcing the hidden state trajectories
to have a mean of zero is implemented in the MARSS() function using the
control value demean.states=TRUE.

Using these constraints, the DFA model becomes

11.2 The data 99

yt =


y1,t
y2,t
y3,t
y4,t
y5,t
y6,t

 =


γ11 0 0
γ21 γ22 0
γ31 γ32 γ33

γ41 γ42 γ43

γ51 γ52 γ53

γ61 γ62 γ63

xt +


a1

a2

a3

a4

a5

a6

+


v1,t
v2,t
v3,t
v4,t
v5,t
v6,t


where vt ∼ MVN(0,R)

xt =

x1,t

x2,t

x3,t

 = I

x1,t−1

x2,t−1

x3,t−1

+

0
0
0

+

w1,t

w2,t

w3,t


where wt ∼ MVN

(0
0
0

 ,
1 0 0

0 1 0
0 0 1

)

and x0 ∼ MVN
(0

0
0

 ,
5 0 0

0 5 0
0 0 5

)

(11.3)

Here I is the identity matrix and is a diagonal matrix with 1s on the diagonal
and 0s on the off-diagonal.

11.2 The data

For this case study, we will analyze the Lake Washington plankton data that
are loaded in the MARSS package. This is a 33-year time series of monthly
counts of 13 plankton species along with temperature, phosporous, and pH
data. We want to load in the data and then extract the subset of columns
that are the phytoplankton species abundances.

data(lakeWAplankton) #load the data

#Select out only the columns of abundance data

phytoplankton = c("Cryptomonas","Diatom", "Green",

"bluegreen","Unicells","Otheralgae")

dat.spp = lakeWAplankton[,phytoplankton]

#we will use the data from 1977 onward

dat.spp.1977 = dat.spp[181:396,]

#Transpose so time goes across columns

dat.spp.1977 = t(dat.spp.1977)

#Replace -99s with NAs to make plotting easier

dat.spp.1977[dat.spp.1977==-99]=NA

It is normal in this type of analysis to standardize each time series by
substracting its mean and dividing by its standard deviation:

100 11 Using MARSS to do dynamic factor analysis

y∗t = Σ−1(yt − ȳ) (11.4)

where Σ is a diagonal matrix with the standard deviations of each time series
along the diagonal and ȳ is a vector of the means. In R, this can be done as
follows

dat=dat.spp.1977

Sigma = sqrt(apply(dat,1,var,na.rm=TRUE))

Mean = apply(dat,1,mean,na.rm=TRUE)

dat.z.scored = (dat-Mean)*(1/Sigma)

rownames(dat.z.scored)=rownames(dat)

Figure 11.1 shows the data.

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●●●

●

●●

●

●

●
●

●

●●●
●
●
●

●

●

●

●

●
●

●
●
●

●

●

●
●
●
●

●

●
●●●
●●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●●
●

●●

●
●
●

●

●
●●
●

●

●

●

●●

●
●

●●●
●

●

●

●
●
●
●●●

●

●
●
●
●
●

●

●
●●

●

●●

●
●

●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●●

●

●
●

●

●

●●

●

●●
●
●●

●

●
●

●

●
●

●●

●

●

●

●

0.
0

0.
5

1.
0

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Cryptomonas

●●
●

●

●

●
●

●

●●

●
●●
●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

−
2

−
1

0
1

2

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Diatom

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●●●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●●

●

●
●

●●

●●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●●
●
●●

●

●
●

●

●

●
●●

●

●

●
●

●●

●

●

●●
●

●

●

●●

●
●

●
●●

●

●

●

●

●●

●

●●●

●●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●●

●●

●

●
●

●●

●

●

●

●

●
●

●●

−
2

−
1

0
1

2

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Green

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●●

●
●

●

●

●●
●

●●●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●●●

●

●

●●●

●
●
●
●●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●
●

●
●

●

●

●

●

−
3

−
2

−
1

0
1

2

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

bluegreen

●

●
●

●

●

●
●

●

●
●●●●

●

●

●
●

●
●

●
●●

●●●

●●●
●

●

●

●
●●●●
●
●

●
●●

●
●
●●●
●

●
●●

●
●
●

●●

●
●●

●●●●

●●

●

●
●
●

●
●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●
●
●
●●●
●
●●●
●
●

●

●
●
●
●

●●

●

●

●
●

●
●
●

●●
●

●

●

●

●●

●

●

●

●

●●
●
●
●

●

●

●

●
●
●
●●●

●

●

●

●●
●

●

●
●●●●●●

●●
●

●

●●

●

●

●●●●
●
●

●
●●

●

●●●●●
●●

●●
●

●

●

●

●●●
●
●●

●

−
4

−
2

0
1

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Unicells

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●
●●
●

●
●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●
●
●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●●

●
●

●●●●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●●

●

●
●

●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●●

●●

●

●

●
●●

●
●

●

●

●

●

−
2

−
1

0
1

2

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Otheralgae

Fig. 11.1. Plot of the phytoplankton data (before z-scoring).

11.3 Setting up the model

Notice when setting up the model structure for MARSS, that the parameter
matrices have a one-to-one correspondence to the model as you would write

11.3 Setting up the model 101

it on paper (11.3). If a parameter matrix has a combination of fixed and
estimated values, then you specify that using matrix(list(), rows, cols).
This is a matrix of class list and allows you to combine numeric and character
values in a single matrix. MARSS recognizes the numeric values as fixed values
and the character values as estimated values.

This is how we set up Z for MARSS:

Z.vals = list(

"gam11", 0, 0,

"gam21","gam22", 0,

"gam31","gam32","gam33",

"gam41","gam42","gam43",

"gam51","gam52","gam53",

"gam61","gam62","gam63")

Z = matrix(Z.vals,6,3,byrow=TRUE)

When specifying the list values, spacing and carriage returns were added to
help show the correspondence with the Z matrix in equation 11.3. If you print
Z (at the R command line), you will see that it is a matrix with character
values (the estimated elements) and numeric values (the fixed 0s). Notice that
the 0s do not have quotes around them. If they did, it would mean the "0" is
a character value and would be interpreted as the name of a parameter to be
estimated not a fixed numeric value.

print(Z)

[,1] [,2] [,3]
[1,] "gam11" 0 0
[2,] "gam21" "gam22" 0
[3,] "gam31" "gam32" "gam33"
[4,] "gam41" "gam42" "gam43"
[5,] "gam51" "gam52" "gam53"
[6,] "gam61" "gam62" "gam63"

The parameter A is set up similarly.

A.vals = list("a1","a2","a3","a4","a5","a6")

A = matrix(A.vals,6,1)

The Q and B matrices are set to be the identity matrix using diag().

Q = B = diag(1,3)

For our first analysis, we will assume that R is diagonal (no covariances) and
each time series of phytoplankton is allowed to have a different observation
variance. Thus R is a diagonal matrix that looks like so:

102 11 Using MARSS to do dynamic factor analysis
r11 0 0 0 0 0
0 r22 0 0 0 0
0 0 r33 0 0 0
0 0 0 r44 0 0
0 0 0 0 r55 0
0 0 0 0 0 r66

 (11.5)

Each of the rii values is a different parameter to be estimated. We can specify
this R structure using a list matrix as follows:

R.vals = list(

"r11",0,0,0,0,0,

0,"r22",0,0,0,0,

0,0,"r33",0,0,0,

0,0,0,"r44",0,0,

0,0,0,0,"r55",0,

0,0,0,0,0,"r66")

R = matrix(R.vals,6,6,byrow=TRUE)

R = "diagonal and unequal"

This is what R looks like:

print(R)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] "r11" 0 0 0 0 0
[2,] 0 "r22" 0 0 0 0
[3,] 0 0 "r33" 0 0 0
[4,] 0 0 0 "r44" 0 0
[5,] 0 0 0 0 "r55" 0
[6,] 0 0 0 0 0 "r66"

Alternatively, MARSS has a shorthand for this structure because it is very
commonly used:

R.vals = list(

"r11",0,0,0,0,0,

0,"r22",0,0,0,0,

0,0,"r33",0,0,0,

0,0,0,"r44",0,0,

0,0,0,0,"r55",0,

0,0,0,0,0,"r66")

R = matrix(R.vals,6,6,byrow=TRUE)

R = "diagonal and unequal"

The parameters π (termed x0 in MARSS) and u are set to be a matrix of
zeros. Either of the following can be used:

11.4 Fitting up the model 103

x0 = U = matrix(0,3,1)

x0 = U = "zero"

There are shorthands for many of the common parameter matrix structures.
Type ?MARSS at the R command line to see a list of the shorthand for each
parameter matrix.

The V0 is a diagonal matrix with 5 along the diagonal:

V0 = diag(5,3)

Finally, we make a list of the model parameters to pass to the MARSS()
function:

dfa.model = list(Z=Z, A=A, R=R, B=B, U=U, Q=Q, x0=x0, V0=V0)

11.4 Fitting up the model

We can now pass the DFA model list to MARSS() to estimate the Z matrix:

kemz.3=MARSS(dat.z.scored,constraint=dfa.model,control=list(demean.states=TRUE))

Success! Parameters converged at 49 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Estimation converged in 49 iterations.
Log-likelihood: -1547.931
AIC: 3149.861 AICc: 3151.054

Estimate
A.a1 -0.000488
A.a2 -0.001906
A.a3 -0.003471
A.a4 -0.007292
A.a5 -0.001812
A.a6 -0.007506
R.1 0.933127
R.2 0.147524
R.3 0.774248
R.4 0.121970
R.5 0.244125
R.6 0.072071
Z.gam11 0.138784
Z.gam21 0.495647
Z.gam31 0.284000

104 11 Using MARSS to do dynamic factor analysis

Z.gam41 0.339314
Z.gam51 0.437177
Z.gam61 0.348523
Z.gam22 0.616302
Z.gam32 -0.015477
Z.gam42 0.036545
Z.gam52 -0.120912
Z.gam62 0.091351
Z.gam33 0.356731
Z.gam43 0.876901
Z.gam53 0.044573
Z.gam63 0.901354

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●●●
●
●●

●

●

●
●

●

●●●●
●
●

●

●

●

●

●
●

●
●
●

●

●

●
●
●
●

●

●
●●●
●●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●●
●

●●

●
●
●

●

●
●●
●

●

●

●

●●

●
●

●●●
●

●

●

●
●
●
●●●

●

●
●
●
●
●

●

●
●●

●

●●

●
●

●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●●

●

●
●

●

●

●●

●

●●
●
●●

●

●
●

●

●
●

●●

●

●

●

●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Cryptomonas

●●
●

●
●

●
●

●

●●

●
●●
●●

●

●

●

●

●●
●

●●

●
●

●

●

●

●●

●

●
●

●

●●
●●

●
●

●

●

●
●

●
●●

●

●

●●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●

●●
●
●●

●

●
●●

●
●
●

●
●●

●
●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●●●
●

●

●

●
●

●

●

●
●
●●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●
●●
●

●
●

●

●

●

●

●

●
●

●
●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Diatom

●●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●●●
●●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●●

●

●
●

●●

●●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●●
●
●●

●
●
●

●

●

●
●●

●

●

●
●

●●

●

●

●●
●

●

●

●●

●
●

●
●●

●

●

●

●

●●

●

●●●

●●

●
●

●●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●

●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●●●●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●
●
●

●
●●●

●●

●

●
●

●●

●

●

●
●

●
●

●●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Green

●

●
●

●
●

●
●
●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●
●
●●
●

●

●

●●

●●

●

●

●●
●
●●●

●●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●●

●
●
●
●●
●
●

●

●

●

●
●
●●●●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●●●●

●

●

●●●
●●
●
●●

●

●
●
●●

●

●

●
●
●
●
●

●●

●

●

●

●●
●

●

●
●●

●

●●

●

●

●

●

●
●
●
●
●●●

●

●

●

●

●

●

●

●●
●●
●

●

●

●
●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●
●●

●●

●

●

●

●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

bluegreen

●

●
●

●

●

●●

●

●
●●●●

●

●

●
●

●●

●
●●
●●●
●●●
●

●

●
●
●●●●
●
●

●
●●

●
●
●●●●

●
●●

●●●

●●

●
●●

●●●●

●●

●

●
●
●

●
●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●
●●●
●
●
●●●
●
●●●
●
●

●

●
●
●
●

●●

●

●

●
●

●●
●

●●
●

●

●

●

●●

●

●

●

●

●●
●
●
●

●

●

●

●
●
●
●●●

●

●

●

●●
●
●

●
●●●●●●

●●
●

●
●●

●

●

●●●●
●
●

●
●●

●

●●●●●
●●

●●
●

●

●

●

●●●
●
●●

●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Unicells

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●●

●●

●
●
●●
●

●●●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●
●

●
●

●

●

●
●●
●
●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●
●
●

●

●

●●
●
●
●

●

●

●
●

●

●

●

●

●

●●
●●●

●
●

●●●●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●●

●

●
●

●

●

●

●
●

●
●

●
●
●●

●
●

●

●

●

●
●

●●

●●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●●
●

●

●
●

●

●

●●●

●●

●

●

●
●●

●●

●

●

●

●

−
4

−
2

0
1

2
3

ab
un

da
nc

e
in

de
x

1977 1980 1983 1986 1989 1992 1995

Otheralgae

Fig. 11.2. Plot of the fits to the phytoplankton data.

11.5 Using model selection to determine the number of trends 105

11.5 Using model selection to determine the number of
trends

Following (Zuur et al., 2003), we use model selection criteria (specifically
AICc) to determine the number of underlying trends which have the high-
est data support. Our first model had three underlying trends (m = 3). Let’s
compare this to a model with two underlying trends. The parameters R and
a stay the same but we need to change the other parameters because m is
different.

m=2

n=6

Q=B=diag(1,m)

x0 = U = matrix(0,m,1)

V0 = diag(5,m)

#Set up Z as a list matrix

Z = matrix(list(),n,m)

#replace all the Z values with "1" to "12" sequentially

Z[,] = as.character(1:(m*n))

#Set the correct i,j values in Z to numeric 0

for(i in 1:(m-1)) Z[i,(i+1):m]=0

dfa.model = list(Z=Z, A=A, R=R, B=B, U=U, Q=Q, x0=x0, V0=V0)

dat = dat.z.scored

kemz.2=MARSS(dat,constraint=dfa.model,control=list(demean.states=TRUE))

Success! Parameters converged at 30 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Estimation converged in 30 iterations.
Log-likelihood: -1597.726
AIC: 3241.452 AICc: 3242.32

Estimate
A.a1 -0.00365
A.a2 -0.00234
A.a3 -0.00343
A.a4 -0.00717
A.a5 -0.00148
A.a6 -0.00758
R.1 0.64888
R.2 0.40568
R.3 0.84309

106 11 Using MARSS to do dynamic factor analysis

R.4 0.12541
R.5 0.84554
R.6 0.06974
Z.1 0.48957
Z.2 0.48553
Z.3 0.30382
Z.4 0.48356
Z.5 0.26520
Z.6 0.53216
Z.8 -0.30212
Z.9 0.27564
Z.10 0.85008
Z.11 -0.12176
Z.12 0.86334

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

print(c(kemz.3$AICc, kemz.2$AICc))

[1] 3151.054 3242.320

The Z matrix specification looks a little odd because we need to create a list
matrix with characters and numeric values (the 0s). You need to be careful
that you do not end up with a character matrix (instead list matrix) with
the 0s given as “0”. If you do that, MARSS will interpret the “0” as names
of a Z parameter that needs to be estimated. You can copy and paste this
code to the R command line and check that the parameters have the correct
structure.

Now we can fit the model and compare the AICc values.

m=2

n=6

Q=B=diag(1,m)

x0 = U = matrix(0,m,1)

V0 = diag(5,m)

#Set up Z as a list matrix

Z = matrix(list(),n,m)

#replace all the Z values with "1" to "12" sequentially

Z[,] = as.character(1:(m*n))

#Set the correct i,j values in Z to numeric 0

for(i in 1:(m-1)) Z[i,(i+1):m]=0

dfa.model = list(Z=Z, A=A, R=R, B=B, U=U, Q=Q, x0=x0, V0=V0)

dat = dat.z.scored

kemz.2=MARSS(dat,constraint=dfa.model,control=list(demean.states=TRUE))

11.5 Using model selection to determine the number of trends 107

Success! Parameters converged at 30 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Estimation converged in 30 iterations.
Log-likelihood: -1597.726
AIC: 3241.452 AICc: 3242.32

Estimate
A.a1 -0.00365
A.a2 -0.00234
A.a3 -0.00343
A.a4 -0.00717
A.a5 -0.00148
A.a6 -0.00758
R.1 0.64888
R.2 0.40568
R.3 0.84309
R.4 0.12541
R.5 0.84554
R.6 0.06974
Z.1 0.48957
Z.2 0.48553
Z.3 0.30382
Z.4 0.48356
Z.5 0.26520
Z.6 0.53216
Z.8 -0.30212
Z.9 0.27564
Z.10 0.85008
Z.11 -0.12176
Z.12 0.86334

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

print(c(kemz.3$AICc, kemz.2$AICc))

[1] 3151.054 3242.320

Now let’s test a suite of models. We will test one to six underlying trends
(m 1 to 6) and four structures for the R matrix (diagonal and unequal, diag-
onal and equal, unconstrained, and equal variance and equal covariance).

108 11 Using MARSS to do dynamic factor analysis

#Set up the model

levels.R = c("diagonal and unequal", "diagonal and equal",

"unconstrained")

model.data = data.frame()

dat = dat.z.scored

n=dim(dat)[1]

for(R in levels.R){

for(m in 1:(n-1))

{

Z = matrix(list(),n,m)

Z[,] = as.character(1:(m*n))

if(m>1){

for(i in 1:(m-1)) Z[i,(i+1):m]=0

}

x0 = U = matrix(0,m,1)

Q = B = diag(1,m)

V0 = diag(5,m)

dfa.model = list(Z=Z, A=A, R=R, B=B, U=U, Q=Q, x0=x0, V0=V0)

kemz=MARSS(dat,constraint=dfa.model,control=list(demean.states=TRUE))

model.data=rbind(model.data,data.frame(R=R,m=m,logLik=kemz$logLik,

AICc=kemz$AICc, K=kemz$num.params, stringsAsFactors=FALSE))

assign(paste("kemz",m,R,sep="."),kemz)

}

}

Table 11.1. The model fits.

R m logLik AICc K
unconstrained 4 -1455.45 3004.22 45.00

unconstrained 3 -1459.99 3006.86 42.00
unconstrained 5 -1455.24 3008.10 47.00
unconstrained 2 -1469.74 3017.83 38.00

diagonal and unequal 4 -1512.44 3086.36 30.00
diagonal and unequal 5 -1532.05 3129.77 32.00
diagonal and unequal 3 -1547.93 3151.05 27.00
diagonal and equal 5 -1592.27 3239.73 27.00

diagonal and unequal 2 -1597.73 3242.32 23.00
diagonal and equal 4 -1601.50 3254.03 25.00
diagonal and equal 3 -1614.45 3273.69 22.00

unconstrained 1 -1611.01 3289.80 33.00
diagonal and unequal 1 -1644.37 3325.28 18.00
diagonal and equal 2 -1688.60 3413.73 18.00
diagonal and equal 1 -1770.42 3567.12 13.00

11.7 Discussion 109

11.6 Using a varimax rotation to determine the trend
loadings

As (Harvey, 1989, p. 450) discusses in section 8.5.1, there are multiple equiv-
alent solutions to the dynamic factor loadings. We arbitrarily constrained Z
in such a way to choose only one of these solutions, however the different pos-
sible solutions are equivalent. The different solutions can be related to each
other by a rotation matrix H. Let H be any m×m non-singular matrix. The
following are equivalent solutions:

yt = Zxt + a + vt
xt = xt−1 + wt

(11.6)

and

yt = ZH−1xt + a + vt
Hxt = Hxt−1 + Hwt

(11.7)

There are many ways of doing factor rotations, and a common approach
is the varimax rotation which seeks a rotation matrix H that tries to create
the largest difference beween loadings. For example, let’s say there are three
trends in our model. In our estimated Z matrix, let’s say row 3 is (0.2, 0.2, 0.2).
That would mean that data series 3 is equally described by trends 1, 2, and
3. If instead row 3 was (0.8, 0.1, 0.2), this would make interpretation easier
because we could say that data time series 3 was mostly described by trend
1. The varimax rotation finds the H matrix that makes the Z rows more like
(0.8, 0.2, 0.2) and less like (0.2, 0.2, 0.2).

The varimax rotation is easy to compute in R since R has a built in function
for this.

b=sort(model.data$AICc,index.return=TRUE)

best.model=model.data[b$ix[1],]

fitname=paste("kemz",best.model$m,best.model$R,sep=".")

best.fit=get(fitname)

Zrot = varimax(best.fitparZ)$loadings #Z%*%H^{-1}

11.7 Discussion

These models can take a long time to converge. Make sure to try dif-
ferent inits values and force the algorithm to run a long time by using
control=list(minit=big, maxit=big), where “big” is a big number.

110 11 Using MARSS to do dynamic factor analysis

●

●

●

−
0.

5
0.

0
0.

5

C
ryptom

onas

D
iatom

U
nicells

factor loadings trend 1

●
●

●

−
0.

5
0.

0
0.

5

D
iatom

G
reen

U
nicells

factor loadings trend 2

●

●

●

●

−
0.

5
0.

0
0.

5

G
reen

bluegreen

U
nicells

O
theralgae

factor loadings trend 3

−
0.

5
0.

0
0.

5

factor loadings trend 4

Fig. 11.3. Plot of the factor loadings (after varimax rotation) to the phytoplankton
data. Factor loadings that are less than 0.1 are not plotted. Why is the trend 4 plot
blank? It turns out that after the varimax rotation, the loadings on trend 4 are close
to 0. The loadings on the other 3 trends are close to those from the model with
m = 3 (instead of m = 4). This suggests that we choose the model with m = 3 (2nd
row in table) instead of m = 4.

12

Case Study 5: Using state-space models to
analyze noisy animal tracking data

12.1 A simple random walk model of animal movement

A simple random walk model of movement with drift (directional movement)
but no correlation is

x1,t = x1,t−1 + u1 + v1,t, v1,t ∼ N(0, σ2
1) (12.1)

x2,t = x2,t−1 + u2 + v2,t, v2,t ∼ N(0, σ2
2) (12.2)

where x1,t is the location at time t along one axis (here, longitude) and x2,t is
for another, generally orthogonal, axis (in here, latitude). The parameter u1 is
the rate of longitudinal movement and u2 is the rate of latitudinal movement.
We add errors to our observations of location:

y1,t = x1,t + w1,t, w1,t ∼ N(0, η2
1) (12.3)

y2,t = x2,t + w2,t, w2,t ∼ N(0, η2
2), (12.4)

This model is actually comprised of two separate univariate state-space
models. Note that y1 depends only on x1 and y2 depends only on x2. There
are no actual interactions between these two univariate models. However, we
can write the model down in the form of a multivariate model using diagonal
variance-covariance matrices and a diagonal design (Z) matrix. Because the
variance-covariance matrices and Z are diagonal, the x1:y1 and x2:y2 processes
will be independent as intended. Here are Equations 12.2 and 12.4 written as
a MARSS model (in matrix form):[

x1,t

x2,t

]
=
[
x1,t−1

x2,t−1

]
+
[
u1

u2

]
+
[
w1,t

w2,t

]
, wt ∼ MVN

(
0,
[
σ2

1 0
0 σ2

2

])
(12.5)

[
y1,t
y2,t

]
=
[
1 0
0 1

] [
x1,t

x2,t

]
+
[
v1,t
v2,t

]
, vt ∼ MVN

(
0,
[
η2
1 0
0 η2

2

])
(12.6)

112 12 Analyzing animal tracking data

The variance-covariance matrix for wt is a diagonal matrix with unequal vari-
ances, σ2

1 and σ2
2 . The variance-covariance matrix for vt is a diagonal matrix

with unequal variances, η2
1 and η2

2 . We can write this succinctly as

xt = xt−1 + u + vt, wt ∼ MVN(0,Q) (12.7)
yt = Zxt + wt, vt ∼ MVN(0,R). (12.8)

The Z matrix is a 2× 2 identity matrix.

12.2 The problem

Loggerhead sea turtles (Caretta caretta) are listed as threatened under the
United States Endangered Species Act of 1973. Over the last ten years, a
number of state and local agencies have been deploying ARGOS tags on log-
gerhead turtles on the east coast of the United States. We have data on eight
individuals over that period. In this case study, we use some turtle data from
the WhaleNet Archive of STOP Data, however we have corrupted this data
severely by adding random errors in order to create a “Bad Tag” problem. We
corrupted latitude and longitude data by errors (Figure 12.1) and it would
appear that our sea turtles are becoming land turtles (at least part of the
time).

For this case study, we will use the MARSS() function to estimate true
positions and speeds from the corrupted data. We will use a mapping package
to plot the results: the maps package. If you have not already, install this
package by selecting the ‘Packages’ menu and then ‘Install packages’ and then
select maps. If you are on a Mac, remember to select “binaries” for the package
type. Type show.doc(MARSS, Case_study_5.R) to open a file in R with all
R code to get you started on the analyses in this chapter.

12.3 Estimate locations from bad tag data

12.3.1 Read in the data and load maps package

Our noisy data are in loggerheadNoisy. They consist of daily readings of
location (longitude/latitude). The data are recorded daily and MARSS() re-
quires a data entry for each day. If data are missing for a day, then the entries
for latitude and longitude for that day should be -99. However, to make this
case study run quickly, we have interpolated all missing values in the original,
uncorrupted, dataset (loggerhead). The corrupted data are a dataframe and
the first six lines look like so

loggerheadNoisy[1:6,]

12.3 Estimate locations from bad tag data 113

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
● ● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●
●●●●

●
●

●

●

●

Fig. 12.1. Plot of the tag data from the turtle Big Mama. Errors in the location
data make it seem that Big Mama has been moving overland.

turtle month day year lon lat
1 BigMama 5 28 2001 -81.45989 31.70337
2 BigMama 5 29 2001 -80.88292 32.18865
3 BigMama 5 30 2001 -81.27393 31.67568
4 BigMama 5 31 2001 -81.59317 31.83092
5 BigMama 6 1 2001 -81.35969 32.12685
6 BigMama 6 2 2001 -81.15644 31.89568

The file has data for eight turtles:

levels(loggerheadNoisy$turtle)

[1] "BigMama" "Bruiser" "Humpty" "Isabelle" "Johanna"
[6] "MaryLee" "TBA" "Yoto"

We will first analyze the position data for “Big Mama”. We put the data for
“Big Mama” into variable dat. dat is transposed because we need time across
the columns.

114 12 Analyzing animal tracking data

turtlename="BigMama"

dat = loggerheadNoisy[which(loggerheadNoisy$turtle==turtlename),5:6]

dat = t(dat) #transpose

We will begin by specifying the structure of the MARSS model and then
use MARSS() to fit that model to the data. There are two state processes (one
for latitude and the other for longitude), and there is one observation time
series for each state process. As we saw in Equation 12.6, Z is the an identity
matrix (a diagonal matrix with 1s on the diagonal). We could specify this
structure as Z.constraint="identity" or Z.constraint=factor(c(1,2)).
Although technically, this is unnecessary as this is the default contraint for Z.

We will assume that the errors are independent and that there are different
drift rates (u), process variances (σ2) and observation variances for latitude
and longitude (η2).

Z.constraint=factor(c(1,2))

U.constraint="unequal"

Q.constraint="diagonal and unequal"

R.constraint="diagonal and unequal"

Fit the model to the data:

kem = MARSS(dat, constraint=list(Z = Z.constraint,

Q = Q.constraint, R = R.constraint, U = U.constraint))

12.3.2 Compare state estimates to the real positions

The real locations (from which loggerheadNoisy was produced by adding
noise) are in loggerhead. In Figure 12.2, we compare the tracks estimated
from the noisy data with the original, good, data (see Case_Study_5.R for
the code to make this plot. There are only a few data points for the real data
because in the real tag data, there are many missing days.

12.3.3 Estimate speeds for each turtle

Turtle biologists designated one of these loggerheads“Big Mama,”presumably
for her size and speed. For each of the eight turtles, estimate the average miles
traveled per day. To calculate the distance traveled by a turtle each day, you
use the estimate (from MARSS()) of the lat/lon location of turtle at day t and
at day t − 1. To calculate distance traveled in miles from lat/lon start and
finish locations, we will use the function GCDF defined at the beginning of the
R script, Case_Study_5.R):

distance[i-1]=GCDF(pred.lon[i-1],pred.lon[i],

pred.lat[i-1],pred.lat[i])

12.3 Estimate locations from bad tag data 115

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
● ● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●
●●●●

●
●

●

●

●

● bad locations
estimated true location
good location data

Fig. 12.2. Plot of the estimated track of the turtle Big Mama versus the good
location data (before we corrupted it with noise).

pred.lon and pred.lat are the predicted longitudes and latitudes from
MARSS(): rows one and two in kem$states. To calculate the distances for
all days, we put this through a for loop:

distance = array(-99, dim=c(dim(dat)[2]-1,1))

for(i in 2:dim(dat)[2])

distance[i-1]=GCDF(pred.lon[i-1],pred.lon[i],

pred.lat[i-1],pred.lat[i])

The command mean(distance) gives us the average distance per day. We
can also make a histogram of the distances traveled per day (Figure 12.3).
Repeat the analysis done for “Big Mama” for each of the other turtles and fill

out the speed table (Table 12.1).

116 12 Analyzing animal tracking data

Histogram of distance

distance

F
re

qu
en

cy

0 10 20 30 40 50

0
5

10
15

Fig. 12.3. Histogram of the miles traveled per day for Big Mama. Compare this
to the estimate of miles traveled per day if you had not accounted for measurement
errors. See the script file, Case_Study_5.R, for the code to do this.

12.4 Comparing turtle tracks to proposed fishing areas

One of the greatest threats to the long term viability of loggerhead turtles is
incidental take by net/pot fisheries. Add two proposed fishing areas to your
turtle plots:

the proposed fishery areas

lines(c(-77,-78,-78,-77,-77),

c(33.5,33.5,32.5,32.5,33.5),col="red",lwd=2)

lines(c(-75,-76,-76,-75,-75),

c(38,38,37,37,38),col="red",lwd=2)

Given that only one area can be chosen as a future fishery, what do your
predicted movement trajectories for our eight turtles tell you?

12.5 Using specialized packages to analyze tag data 117

Table 12.1. Estimated speeds with location errors included in model versus speeds
when we assume that the data have no location error.

Location Data
error included assumed to be

Turtle in model error free

Big Mama

Bruiser

Humpty

Isabelle

Johanna

Mary Lee

TBA

Yoto

12.5 Using specialized packages to analyze tag data

If you have real tag data to analyze, you should use a state-space modeling
package that is customized for fitting MARSS models to tracking data. The
MARSS package does not have all the bells and whistles that you would
want for analyzing tracking data, particularly tracking data in the marine
environment. These are a couple R packages that we have come across for
this purpose:

UKFSST http://www.soest.hawaii.edu/tag-data/tracking/ukfsst/
KFTRACK http://www.soest.hawaii.edu/tag-data/tracking/kftrack/

kftrack is a full-featured toolbox for analyzing tag data with extended
Kalman filtering. It incorporates a number of extensions that are important
for analyzing track data: barriers to movement such as coastlines and non-
Gaussian movement distributions. With kftrack, you can use the real tag
data which has big gaps, i.e. days with no location. MARSS() will struggle with
these data because it will estimate states for all the unseen days; kftrack only
fits to the seen days.

To use kftrack to fit the turtle data, type

library(kftrack) # must be installed from a local zip file

loggerhead = loggerhead

Run kftrack with the first turtle (BigMama)

118 12 Analyzing animal tracking data

turtlename = "BigMama"

dat = loggerhead[which(loggerhead$turtle == turtlename),2:6]

model = kftrack(dat, fix.first=F, fix.last=F,

var.struct="uniform")

A

Textbooks and articles that use MARSS
modeling for population modeling

Textbooks Describing the Estimation of Process and
Non-process Variance

There are many textbooks on Kalman filtering and estimation of state-space
models. The following are a sample of books on state-space modeling that we
have found especially helpful.

Shumway, R. H., and D. S. Stoffer. 2006. Time series analysis and its
applications. Springer-Verlag, New York, New York, USA.

Harvey, A. C. 1989. Forecasting, structural time series models and the
Kalman filter. Cambridge University Press, Cambridge, UK.

Durbin, J., and S. J. Koopman. 2001. Time series analysis by state space
methods. Oxford University Press, Oxford.

Kim, C. J. and Nelson, C. R. (1999), State space models with regime
switching, MIT Press, Cambridge, Massachusetts.

King, R., G. Olivier, B. Morgan, and S. Brooks. 2009. Bayesian analysis
for population ecology.

Giovanni, P., S. Petrone, and P. Campagnoli. 2009. Dynamic linear models
in R.

Pole, A., M. West, and J. Harrison. 1994. Applied Bayesian forecasting
and time series analysis.

Bolker, B. 2008. Ecological models and data in R. Princeton University
Press.

West, M. and Harrison, J. (1997), Bayesian forecasting and dynamic mod-
els, Springer-Verlag.

Maximum-likelihood papers

This is just a sample of the papers from the population modeling literature.

120 A Textbooks and articles that use MARSS modeling for population modeling

de Valpine, P. 2002. Review of methods for fitting time-series models with
process and observation error and likelihood calculations for nonlinear, non-
Gaussian state-space models. Bulletin of Marine Science 70:455-471.

de Valpine, P. and A. Hastings. 2002. Fitting population models incorpo-
rating process noise and observation error. Ecological Monographs 72:57-76.

de Valpine, P. 2003. Better inferences from population-dynamics exper-
iments using Monte Carlo state-space likelihood methods. Ecology 84:3064-
3077.

de Valpine, P. and R. Hilborn. 2005. State-space likelihoods for nonlin-
ear fisheries time series. Canadian Journal of Fisheries and Aquatic Sciences
62:1937-1952.

Dennis, B., J.M. Ponciano, S.R. Lele, M.L. Taper, and D.F. Staples. 2006.
Estimating density dependence, process noise, and observation error. Ecolog-
ical Monographs 76:323-341.

Ellner, S.P. and E.E. Holmes. 2008. Resolving the debate on when extinc-
tion risk is predictable. Ecology Letters 11:E1-E5.

Erzini, K. 2005. Trends in NE Atlantic landings (southern Portugal): iden-
tifying the relative importance of fisheries and environmental variables. Fish-
eries Oceanography 14:195-209.

Erzini, K., Inejih, C. A. O., and K. A. Stobberup. 2005. An applica-
tion of two techniques for the analysis of short, multivariate non-stationary
time-series of Mauritanian trawl survey data ICES Journal of Marine Science
62:353-359.

Hinrichsen, R.A. and E.E. Holmes. 2009. Using multivariate state-space
models to study spatial structure and dynamics. In Spatial Ecology (editors
Robert Stephen Cantrell, Chris Cosner, Shigui Ruan). CRC/Chapman Hall.

Hinrichsen, R.A. 2009. Population viability analysis for several populations
using multivariate state-space models. Ecological Modelling 220:1197-1202.

Holmes, E.E. 2001. Estimating risks in declining populations with poor
data. Proceedings of the National Academy of Sciences of the United States
of America 98:5072-5077.

Holmes, E.E. and W.F. Fagan. 2002. Validating population viability anal-
ysis for corrupted data sets. Ecology 83:2379-2386.

Holmes, E.E. 2004. Beyond theory to application and evaluation: diffu-
sion approximations for population viability analysis. Ecological Applications
14:1272-1293.

Holmes, E.E., W.F. Fagan, J.J. Rango, A. Folarin, S.J.A., J.E. Lippe, and
N.E. McIntyre. 2005. Cross validation of quasi-extinction risks from real time
series: An examination of diffusion approximation methods. U.S. Department
of Commerce, NOAA Tech. Memo. NMFS-NWFSC-67, Washington, DC.

Holmes, E.E., J.L. Sabo, S.V. Viscido, and W.F. Fagan. 2007. A statistical
approach to quasi-extinction forecasting. Ecology Letters 10:1182-1198.

Kalman, R.E. 1960. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering 82:35-45.

A Textbooks and articles that use MARSS modeling for population modeling 121

Lele, S.R. 2006. Sampling variability and estimates of density dependence:
a composite likelihood approach. Ecology 87:189-202.

Lele, S.R., B. Dennis, and F. Lutscher. 2007. Data cloning: easy maximum
likelihood estimation for complex ecological models using Bayesian Markov
chain Monte Carlo methods. Ecology Letters 10:551-563.

Lindley, S.T. 2003. Estimation of population growth and extinction pa-
rameters from noisy data. Ecological Applications 13:806-813.

Ponciano, J.M., M.L. Taper, B. Dennis, S.R. Lele. 2009. Hierarchical mod-
els in ecology: confidence intervals, hypothesis testing, and model selection
using data cloning. Ecology 90:356-362.

Staples, D.F., M.L. Taper, and B. Dennis. 2004. Estimating population
trend and process variation for PVA in the presence of sampling error. Ecology
85:923-929.

Zuur, A. F., and G. J. Pierce. 2004. Common trends in Northeast Atlantic
squid time series. Journal of Sea Research 52:57-72.

Zuur, A. F., I. D. Tuck, and N. Bailey. 2003. Dynamic factor analysis to
estimate common trends in fisheries time series. Canadian Journal of Fisheries
and Aquatic Sciences 60:542-552.

Zuur, A. F., R. J. Fryer, I. T. Jolliffe, R. Dekker, and J. J. Beukema. 2003.
Estimating common trends in multivariate time series using dynamic factor
analysis. Environmetrics 14:665-685.

Bayesian papers

This is a sample of the papers from the population modeling and animal
tracking literature.

Buckland, S.T., K.B. Newman, L. Thomas and N.B. Koestersa. 2004.
State-space models for the dynamics of wild animal populations. Ecological
modeling 171:157-175.

Calder, C., M. Lavine, P. Müller, J.S. Clark. 2003. Incorporating multiple
sources of stochasticity into dynamic population models. Ecology 84:1395-
1402.

Chaloupka, M. and G. Balazs. 2007. Using Bayesian state-space modelling
to assess the recovery and harvest potential of the Hawaiian green sea turtle
stock. Ecological Modelling 205:93-109.

Clark, J.S. and O.N. Bjørnstad. 2004. Population time series: process vari-
ability, observation errors, missing values, lags, and hidden states. Ecology
85:3140-3150.

Jonsen, I.D., R.A. Myers, and J.M. Flemming. 2003. Meta-analysis of an-
imal movement using state space models. Ecology 84:3055-3063.

Jonsen, I.D, J.M. Flemming, and R.A. Myers. 2005. Robust state-space
modeling of animal movement data. Ecology 86:2874-2880.

122 A Textbooks and articles that use MARSS modeling for population modeling

Meyer, R. and R.B. Millar. 1999. BUGS in Bayesian stock assessments.
Can. J. Fish. Aquat. Sci. 56:1078-1087.

Meyer, R. and R.B. Millar. 1999. Bayesian stock assessment using a state-
space implementation of the delay difference model. Can. J. Fish. Aquat. Sci.
56:37-52.

Meyer, R. and R.B. Millar. 2000. Bayesian state-space modeling of age-
structured data: fitting a model is just the beginning. Can. J. Fish. Aquat.
Sci. 57:43-50.

Newman, K.B., S.T. Buckland, S.T. Lindley, L. Thomas, and C. Fernán-
dez. 2006. Hidden process models for animal population dynamics. Ecological
Applications 16:74-86.

Newman, K.B., C. Fernández, L. Thomas, and S.T. Buckland. 2009. Monte
Carlo inference for state-space models of wild animal populations. Biometrics
65:572-583

Rivot, E., E. Prévost, E. Parent, and J.L. Baglinière. 2004. A Bayesian
state-space modelling framework for fitting a salmon stage-structured popu-
lation dynamic model to multiple time series of field data. Ecological Modeling
179:463-485.

Schnute, J.T. 1994. A general framework for developing sequential fisheries
models. Canadian J. Fisheries and Aquatic Sciences 51:1676-1688.

Swain, D.P., I.D. Jonsen, J.E. Simon, and R.A. Myers. 2009. Assessing
threats to species at risk using stage-structured state-space models: mortality
trends in skate populations. Ecological Applications 19:1347-1364.

Thogmartin, W.E., J.R. Sauer, and M.G. Knutson. 2004. A hierarchical
spatial model of avian abundance with application to cerulean warblers. Eco-
logical Applications 14:1766-1779.

Trenkel, V.M., D.A. Elston, and S.T. Buckland. 2000. Fitting population
dynamics models to count and cull data using sequential importance sampling.
J. Am. Stat. Assoc. 95:363-374.

Viljugrein, H., N.C. Stenseth, G.W. Smith, and G.H. Steinbakk. 2005.
Density dependence in North American ducks. Ecology 86:245-254.

Ward, E.J., R. Hilborn, R.G. Towell, and L. Gerber. 2007. A state-space
mixture approach for estimating catastrophic events in time series data. Can.
J. Fish. Aquat. Sci., Can. J. Fish. Aquat. Sci. 644:899-910.

Wikle, C.K., L.M. Berliner, and N. Cressie. 1998. Hierarchical Bayesian
space-time models. Journal of Environmental and Ecological Statistics 5:117-
154

Wikle, C.K. 2003. Hierarchical Bayesian models for predicting the spread
of ecological processes. Ecology 84:1382-1394.

B

Package MARSS: Object structures

B.1 Model objects: class marssm

Objects of class ‘marssm’ specify Multivariate Autoregressive State Space
(MARSS) models. The model component of an ML estimation object (class
marssMLE; see below) is a marssm object. These objects have the following
components:

data An optional matrix (not dataframe), in which each row is a time series
(time across columns).

fixed A list with 8 matrices Z, A, R, B, U, Q, x0, V0, specifying which
elements of each parameter are fixed.

free A list with 8 matrices Z, A, R, B, U, Q, x0, V0, specifying which elements
of each parameter are to be estimated.

M An array of dim n× n× T (an n× n missing values matrix for each time
point). Each matrix is diagonal with 0 at the i, i value if the i-th value of
y is missing, and 1 otherwise.

miss.value Specifies missing value representation in the data.

The matrices in fixed and free work as pairs to specify the fixed and free
elements for each parameter. See Chapter 4. The dimensions for fixed and
free matrices are as follows, where n is the number of observation time series
and m is the number of state processes:

Z n x m
B m x m
U m x 1
Q m x m
A n x 1
R n x n
x0 m x 1
V0 m x m

124 B Package MARSS: Object structures

Use is.marssm() to check whether an marssm object is correctly specified.
The MARSS package includes an as.marssm() method to convert objects of
class popWrap (see next section) to objects of class marssm.

B.2 Wrapper objects: class popWrap

Wrapper objects of class popWrap contain specifications and options for esti-
mation of a MARSS model. A popWrap object has the following components:

data A matrix (not dataframe) of observations (rows) × time (columns).
m Number of hidden state processes (number of rows in x).
constraint Either a list with 8 string elements Z, A, R, B, U, Q, x0, V0 (see

below for details), or string "use fixed/free".
fixed If constraint[[elem]]="use fixed/free", a list with 8 matrices Z,

A, R, B, U, Q, x0, V0.
free If constraint[[elem]]="use fixed/free", a list with 8 matrices Z, A,

R, B, U, Q, x0, V0.
inits A list with 8 matrices Z, A, R, B, U, Q, x0, V0, specifying initial values

for parameters. Dimensions are given in the class ‘marssm’ section.
miss.value Specifies missing value representation (default is -99).
method The method used for estimation: ‘kem’ for Kalman-EM, ‘BFGS’ for

quasi-Newton.
control List of estimation options. For the EM algorithm, these include the

elements minit, maxit, abstol, allow.degen, safe and trace. For
Monte Carlo initialization, these include the elements MCInit, numInits,
numInitSteps and boundsInits. See class marssMLE section for details.

Component constraint is a convenient way to specify model structure for
certain common cases. If constraint="use fixed/free", both fixed and
free must be provided. See the class marssm section for how to specify fixed
and free matrices. The function MARSS() calls popWrap() to create a pop-
Wrap object, then is.marssm() to coerce this object to class marssm for the
estimation function.

The popWrap() function calls checkPopWrap() to check user inputs from
MARSS(). Valid constraints are below.

A May be either the string ‘scaling’ or the string ‘zero’ to specify a column
vector of zeros (a = 0).

B String ‘identity’ or a numeric matrix specifying a fixed B matrix. The string
‘zero’ may be used to specify a m×m matrix of zeros (B = 0).

Q String ‘unconstrained’, ‘diagonal and unequal’, ‘diagonal and equal’, or
‘equalvarcov’. May also be numeric or character vector of class factor
specifying shared diagonal values or a numeric matrix specifying a fixed
Q matrix.

B.3 ML estimation objects: class marssMLE 125

R String ‘unconstrained’, ‘diagonal and unequal’, ‘diagonal and equal’, or
‘equalvarcov’. May also be numeric or character vector of class factor
specifying shared diagonal values or a numeric matrix specifying a fixed
R matrix.

U String ‘unconstrained’=‘unequal’, or ‘equal’. May also be numeric or char-
acter vector of class factor specifying shared u elements or a m×1 numeric
matrix specifying a fixed u matrix. The string ‘zero’ may be used to specify
a column vector of zeros (u = 0).

x0 String ‘unconstrained’=‘unequal’, or ‘equal’. May also be vector of class
factor specifying shared π (t = 1) values or a m × 1 numeric matrix
specifying a fixed π (t = 1) matrix. The string ‘zero’ may be used to
specify a column vector of zeros (π = 0).

Z A vector of class factor specifying which y time series correspond to which
state time series (in x) or a numeric n×m matrix specifying the Z matrix.
The string ‘identity’ can be used to specify a n × n identity matrix and
string ‘ones’ may be used to specify a column vector of n ones.

B.3 ML estimation objects: class marssMLE

Objects of class marssMLE specify maximum-likelihood estimation for a
MARSS model, both before and after fitting. A minimal marssMLE object
contains components model, start and control, which must be present for
estimation by functions like MARSSkem().

model MARSS model specification (an object of class ‘marssm’).
start List with 7 matrices A, R, B, U, Q, x0, V0, specifying initial values for

parameters. Dimensions are given in the class marssm section.
control A list specifying estimation options. For method="kem", these are

minit Minimum number of iterations in the maximization algorithm.
maxit Maximum number of iterations in the maximization algorithm.
abstol Optional tolerance for log-likelihood change. If log-likelihood de-

creases less than this amount relative to the previous iteration, the
EM algorithm exits.

trace A positive integer. If not zero, a record will be created of each vari-
able the maximization iterations. The information recorded depends
on the maximization method.

safe If TRUE, MARSSkem() will rerun MARSSkf() after each individual
parameter update rather than only after all parameters are updated.

MCInit Use Monte Carlo initialization?
numInits Number of random initial value draws.
numInitSteps Number of iterations for each initial value draw.
boundsInits Bounds on the uniform distributions from which initial values

will be drawn. (Note that bounds for the covariance matrices Q and
R, which require positive values, are specified in logs.)

126 B Package MARSS: Object structures

silent Suppresses printing of progress bar and convergence information.

MARSSkem() appends the following components to the marssMLE’ object:

method A string specifying the estimation method (‘kem’ for estimation by
MARSSkem()).

par A list with 8 matrices of estimated parameter values Z, A, R, B, U, Q, x0,
V0. If there are fixed elements in the matrices, the corresponding elements
in $par are set to the fixed values.

kf A list containing Kalman filter/smoother output. See Chapter 2
numIter Number of iterations required for convergence.
convergence Convergence status.
logLik the exact Log-likelihood. See Section 5.2.
errors any error messages
iter.record record of the parameter values at each iteration (if control$trace=1)

Several functions append additional components to the ‘marssMLE’ object
passed in. These include:

MARSSaic Appends AIC, AICc, AICbb, AICbp, depending on the AIC fla-
vors requested.

MARSShessian Appends Hessian, gradient, parMean and parSigma.
MARSSparamCIs Appends par.se, par.bias, par.upCI and par.lowCI.

C

Package MARSS: The top-level MARSS
functions and the base functions

Package MARSS includes functions for estimating Multivariate Autoregres-
sive State Space models, obtaining confidence intervals for parameters, and
calculating Akaike’s Information Criterion (AIC) for model selection. To make
the package both flexible and easy to use, it is designed in two levels. At the
base level, the programmer can interact directly with the estimation functions,
using two kinds of R objects: objects of the model specification class ‘marssm’,
and objects of estimation classes such as ‘marssMLE’. At the user level, the
MARSS() function allows model estimation with just one function call, hiding
the details for ease of use. Users create models in an intuitive way by spec-
ifying constraints; the MARSS() function then converts these constraints into
the object structures required by the estimation functions, performing error
checking as necessary.

The two-level package structure allows new users convenient access to the
underlying functions, while maintaining flexibility to incorporate different ap-
plications and algorithms. Developers can use the base object types to write
new functions for their own modeling applications.

To use MARSS(), the user specifies a model by supplying the constraint
argument to MARSS(), using the method argument to specify an estimation
method. Optionally, the user may provide initial values for the free parame-
ters, and specify estimation options; for details see the MARSS() help file. The
function returns an object containing the model, parameter values and esti-
mation details. The user may pass the returned object to MARSSboot(), which
generates bootstrap parameter estimates, or to MARSSaic(), which calculates
various versions of AIC for model selection.

Figure C.1 shows the underlying base level operations MARSS() performs.
The function creates a wrapper object of class ‘popWrap’. It then calls the
as.marssm() method for ‘popWrap’ to create a marssm object from the con-
straints provided. This model object, initial values and control information
are the minimal information required by the estimation functions, and are
combined into an object of class appropriate for the estimation method. The
estimation function adds to this object the estimated parameter values, esti-

128 C Package MARSS: The top-level MARSS functions and the base functions

mation details, and other function-specific components, and then returns the
augmented object.

Fig. C.1. Two-level structure of the MARSS package. Rectangles represent func-
tions; ovals represent objects.

References

Biernacki, C., Celeux, G., and Govaert, G. 2003. Choosing starting
values for the EM algorithm for getting the highest likelihood in multivari-
ate gaussian mixture models. Computational Statistics and Data Analysis
41:561–575.

Brockwell, P. J. and Davis, R. A. 1991. Time series: theory and methods.
Springer-Verlag, New York, NY.

Cavanaugh, J. and Shumway, R. 1997. A bootstrap variant of AIC for
state-space model selection. Statistica Sinica 7:473–496.

Dempster, A., Laird, N., and Rubin, D. 1977. Likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series
B 39:1–38.

Dennis, B., Munholland, P. L., and Scott, J. M. 1991. Estimation
of growth and extinction parameters for endangered species. Ecological
Monographs 61:115–143.

Dennis, B., Ponciano, J. M., Lele, S. R., Taper, M. L., and Staples,
D. F. 2006. Estimating density dependence, process noise, and observation
error. Ecological Monographs 76:323–341.

Ellner, S. P. and Holmes, E. E. 2008. Resolving the debate on when
extinction risk is predictable. Ecology Letters 11:E1–E5.

Gerber, L. R., Master, D. P. D., and Kareiva, P. M. 1999. Grey
whales and the value of monitoring data in implementing the u.s. endan-
gered species act. Conservation Biology 13:1215–1219.

Ghahramani, Z. and Hinton, G. E. 1996. Parameter estimation for
linear dynamical systems. Technical Report CRG-TR-96-2, University of
Totronto, Dept. of Computer Science.

Harvey, A. C. 1989. Forecasting, structural time series models and the
Kalman filter. Cambridge University Press, Cambridge, UK.

Harvey, A. C. and Shephard, N. 1993. Structural time series models. In
G. S. Maddala, C. R. Rao, and H. D. Vinod (eds.), Handbook of Statistics,
Volume 11. Elsevier Science Publishers B V, Amsterdam.

130 References

Hinrichsen, R. 2009. Population viability analysis for several populations
using multivariate state-space models. Ecological Modelling 220:1197–1202.

Hinrichsen, R. and Holmes, E. E. 2009. Using multivariate state-space
models to study spatial structure and dynamics. In R. S. Cantrell, C.
Cosner, and S. Ruan (eds.), Spatial Ecology. CRC/Chapman Hall.

Holmes, E. E. 2001. Estimating risks in declining populations with poor
data. Proceedings of the National Academy of Sciences of the United States
of America 98:5072–5077.

Holmes, E. E. 2004. Beyond theory to application and evaluation: diffusion
approximations for population viability analysis. Ecological Applications
14:1272–1293.

Holmes, E. E. 2010. Derivation of the EM algorithm for constrained and
unconstrained marss models. Technical report, Northwest Fisheries Science
Center, Mathematical Biology Program.

Holmes, E. E., Sabo, J. L., Viscido, S. V., and Fagan, W. F. 2007.
A statistical approach to quasi-extinction forecasting. Ecology Letters
10:1182–1198.

Holmes, E. E. and Ward, E. W. 2010. Analyzing noisy, gappy, and mul-
tivariate population abundance data: modeling, estimation, and model se-
lection in a maximum-likelihood framework. Technical report, Northwest
Fisheries Science Center, Mathematical Biology Program.

Jeffries, S., Huber, H., Calambokidis, J., and Laake, J. 2003. Trends
and status of harbor seals in washington state 1978-1999. Journal of Wildlife
Management 67:208–219.

Kalman, R. E. 1960. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering 82:35–45.

Kohn, R. and Ansley, C. F. 1989. A fast algorithm for signal extraction,
influence and cross-validation in state-space models. Biometrika 76:65–79.

Koopman, S. J. 1993. Distrubance smoother for state space models.
Biometrika 80:117–126.

Koopman, S. J., Shephard, N., and Doornik, J. A. 1999. Statistical
algorithms for models in state space using ssfpack 2.2. Econometrics Journal
2:113âĂŞ166.

Lele, S. R., Dennis, B., and Lutscher, F. 2007. Data cloning: easy max-
imum likelihood estimation for complex ecological models using bayesian
markov chain monte carlo methods. Ecology Letters 10:551–563.

McLachlan, G. J. and Krishnan, T. 2008. The EM algorithm and ex-
tensions. John Wiley and Sons, Inc., Hoboken, NJ, 2nd edition.

Rauch, H. E. 1963. Solutions to the linear smoothing problem. IEEE Trans-
actions on Automatic Control 8:371âĂŞ372.

Rauch, H. E., Tung, F., and Striebel, C. T. 1965. Maximum likelihood
estimation of linear dynamical systems. Journal of AIAA 3:1445–1450.

Schweppe, F. C. 1965. Evaluation of likelihood functions for Gaussian sig-
nals. IEEE Transactions on Information Theory IT-r:294–305.

References 131

Shumway, R. and Stoffer, D. 2006. Time series analysis and its applica-
tions. Springer-Science+Business Media, LLC, New York, New York, 2nd
edition.

Shumway, R. H. and Stoffer, D. S. 1982. An approach to time series
smoothing and forecasting using the EM algorithm. Journal of Time Series
Analysis 3:253–264.

Staples, D. F., Taper, M. L., and Dennis, B. 2004. Estimating popula-
tion trend and process variation for PVA in the presence of sampling error.
Ecology 85:923–929.

Stoffer, D. S. and Wall, K. D. 1991. Bootstrapping state-space models:
Gaussian maximum likelihood estimation and the Kalman filter. Journal
of the American Statistical Association 86:1024–1033.

Taper, M. L. and Dennis, B. 1994. Density dependence in time series ob-
servations of natural populations: estimation and testing. Ecological Mono-
graphs 64:205–224.

Ward, E. J., Chirakkal, H., González-Suárez, M., Aurioles-
Gamboa, D., Holmes, E. E., and Gerber, L. 2009. Inferring spatial
structure from time-series data: using multivariate state-space models to
detect metapopulation structure of California sea lions in the Gulf of Cali-
fornia, Mexico. Journal of Applied Ecology 1:47–56.

Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R., and Beukema,
J. J. 2003. Estimating common trends in multivariate time series using
dynamic factor analysis. Environmetrics 14:665–685.

Index

animal tracking, 111
kftrack, 117

bootstrap
innovations, 11, 28, 29
MARSSboot function, 11, 45
parametric, 11, 28, 29

confidence intervals, 66
Hessian approximation, 11, 66
MARSSparamCIs function, 11
non-parametric bootstrap, 11
parametric bootstrap, 11, 66

density-independent, 49
diagnostics, 77
DLM package, 3

error
observation, 50
process, 49, 50

errors
degenerate, 5
ill-conditioned, 5

estimation, 53
BFGS, 32
Dennis method, 54
Kalman filter, 10, 25
Kalman smoother, 10, 25
Kalman-EM, 10, 27, 53
maximum-likelihood, 53, 54
Newton methods, 28
quasi-Newton, 10, 32
REML, 3

extinction, 49
diffusion approximation, 58
uncertainty, 62

functions
as.marssm, 124
checkPopWrap, 124
is.marssm, 11, 124
is.marssMLE, 10
MARSS, 9, 32, 34–37, 124
MARSSaic, 10, 28, 29, 46, 126
MARSSboot, 11, 28, 43, 45
MARSShessian, 11, 126
MARSSkem, 10, 27, 125, 126
MARSSkf, 10, 25, 26, 40
MARSSmcinit, 10, 28
MARSSoptim, 10
MARSSparamCIs, 4, 11, 28, 39, 126
MARSSsimulate, 11, 29, 43, 44
MARSSvectorizeparam, 11, 40, 44
optim, 3, 10, 28
popWrap, 124
summary, 11, 38

initial conditions
setting for BFGS, 33

KFAS package, 3

likelihood, 10, 26, 44
and missing values, 27
innovations algorithm, 26
MARSSkf function, 44
missing value modifications, 26

134 Index

multimodal, 28
troubleshooting, 5, 28

MARSS model, 1, 111
DFA example, 97
multivariate example, 69, 89, 111
print, 38
summary, 38
univariate example, 49

missing values, 3
and AICb, 29
and parametric bootstrap, 28
likelihood correction, 27

model selection, 29, 89
AIC, 29, 75, 77, 86, 87, 92, 96
AICc, 29, 86

bootstrap AIC, 29, 86
bootstrap AIC, AICbb, 29, 46
bootstrap AIC, AICbp, V, 29, 46, 86
MARSSaic function, 10, 46

model specification
in MARSS, 13
in marssm objects, 21

objects
marssm, 9, 11, 123
marssMLE, 9, 45, 125, 126
popWrap, 124

simulation, 29, 43, 50
MARSSsimulate function, 11, 43, 44

standard errors, 11

